期刊文献+

基于矩阵变换的聚类集成优化模型

An Optimization Model about Clustering Ensemble based on Matrix Transformation
原文传递
导出
摘要 聚类集成方法能够有效综合不同的聚类结果,提高聚类的精确度和稳定性.提出了一个基于矩阵变换的聚类集成优化模型,模型通过矩阵变换代替传统方法中的聚类配准模式,使得优化模型更加简洁,然后给出了求解该优化模型的叠代算法.实验表明,提出的聚类集成方法能够有效提高聚类集成的稳定性和精确度,并且在聚类数目比较少时,算法有着较低的时间复杂度. The accuracy and stability of clustering could be enhanced by integrating different clustering results with clustering ensemble methods. In this study, an optimization model for clustering ensemble is presented based on matrix transformation, which is used to replace the traditional clustering matching mode and make the optimization model concise. Then an iterative algorithm is brought out. The demonstration indicates that this optimization model can effectively improve the accuracy and stability of clustering, and the iterative algorithm has lower computational complexity while the number of clusters is not large.
出处 《数学的实践与认识》 CSCD 北大核心 2011年第12期165-174,共10页 Mathematics in Practice and Theory
基金 国家自然科学基金(70471049) 天津市应用基础及前沿技术研究计划(10JCYBJC07500)
关键词 聚类集成 矩阵变换 叠代算法 优化模型 clustering ensemble matrix transformation iterative algorithm optimizationmodel
  • 相关文献

参考文献10

  • 1Kaufmann L, Rousseeuw P J. Finding Groups in Data, An Introduction to Cluster Analysis[M]. New York, Lohn Wiley & Sons, 1990: 67-89.
  • 2Minaei-Bidgoli B, Topch A, Punch W F. Ensembles of Partitions via Data Resampling[C]//Proceed ings International Conference on Information Technology, Coding and Computing (ITCC2004), 2004, 2: 188-192.
  • 3Fred A and Jain A K. Combining multiple clusterings using evidence accumulation[J]. IEEE Trans.Pat tern Analysis and Machine Intelligence, 2005, 27(6): 835-850.
  • 4Topchy A, Jain A K and Punch W. A mixture model for clustering enselnbles[C]//Proceedings of the 4th SIAM International Conference on Data Mining, 2004, 379-390.
  • 5Dudoit S and Fridlyand J. Bagging to improve the accuracy of a clustering procedure[J]. Bioinfor- matics, 2003, 19 (9): 1090-1099.
  • 6Fischer B, Buhmann J M. Path-based clustering for grouping of smooth curves and texture segmen- tation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(4): 513-518.
  • 7Topchy A, Jain A K and Punch W. Combining multiple weak clusterings[C]//Proc. IEEE Intl. Conf. on Data Mining, Melbourne, FL, 2003: 331-338.
  • 8Fred A L N and Jain A K. Data clustering using evidence accumulation[C]//Proc, of the 16th International Conference on Pattern Recognition, ICPR 2002 ,Quebec City: 276 -280.
  • 9A Strehl & J Ghosh. Cluster ensembles: a knowledge reuse framework for combining multiple partitions [J]. Journal of Machine Learning Research, 2002, 3(3): 583-617.
  • 10Juan M. Estevez-Tapiador, Pedro Garcia-Teodoro, Jesus E. Diaz-Verdejo. Anomaly detection meth- ods in wired networks: a survey and taxonomy [J]. Computer Communications, 2004, 27(16): 1569- 1584.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部