期刊文献+

基于BP神经网络的饲料产品品质预测方法 被引量:3

Prediction of the quality of feed based on the BP network
下载PDF
导出
摘要 饲料加工生产过程是一个非常复杂的系统,其产品品质受原料特性和加工参数的影响,且各加工参数之间相互关联,很难用精确的数学模型来反映原料特性和加工参数与产品品质的关系。利用BP神经网络能自身从样本数据中提取相关的信息,并依据数据建立模型,可以有效准确地预测产品品质。试验结果表明,产品淀粉糊化度预测结果与真值的相关系数R在0.99以上,产品水分含量预测结果与真值的相关系数R在0.97以上,预测效果理想。因此,BP神经网络预测模型用于饲料产品加工品质预测是可行的。 The production of feed is a complex process and the quality of products is affected by the characteristic of material and parameters of process while these factors are related to each other.So it is difficult to use a mathematical model reflect the relation of the quality of products,characteristic of material and parameters of process.Through the test based on the predict model,it shows that the BP(Back Propagation) neural network has the capability of self-adaptive and self-learning,and it can predict the quality of feed product accurately.The result of the prediction indicates that the correlation(R) of the starch gelatinization degree predictive value and the true value is above 0.99 and the correlation(R) of the moisture content predictive value and the true value is above 0.97,so it is available to use BP neural network on the prediction of feed quality.
出处 《饲料工业》 北大核心 2011年第11期1-5,共5页 Feed Industry
基金 国家"十一五"科技支撑计划[2006BAD12B0904]
关键词 乳猪料 BP神经网络 产品品质 模型 piglet feed BP neural network quality of products model
  • 相关文献

参考文献9

  • 1Adnan Topuz.Predicting moisture content of agricultural products using artificial neural networks[J].Advances in Engineering Software, 2010(41):464-470.
  • 2Poonpat Poonnoy, Ampawan Tansakul, Manjeet Chinnan. Artificial neural network modeling for temperature and moisture content prediction in tomato slices undergoing microwave-vacuum drying [J].Journal of Food Science, 2007,72(1):42-47.
  • 3KamyaT Movagharnejad, Maryam nikzad, modeling of tomato drying using artificial neural network [J].Computers and Electronics in Agriculture,2007(59):78-85.
  • 4S. Lertworasirikul, Y. Tipsuwan. Moisture content and water activity prediction of semi-finished cassava crackers from drying process with artificial neural network [J]. Journal of Food Engineering,2008(84):65-74.
  • 5S.M. Gonni, S. Oddone, J.A. Segura, et al. Prediction of foods freezing and thawing times: Artificial neural networks and genetic algorithm approach[J].Journal of Food Engineering, 2008(84):164- 178.
  • 6Supachai Pathumnakul, Kullapapruk Piewthongngam, Atthit Apichottanakul. A neural network approach to the selection of feed mix in the feed industry [J]. Computers and Electronics in Agriculture,2009,68(1 ): 18-24.
  • 7唐传茵,李华,周炜,周淑文,赵广耀.基于遗传算法和神经网络的车辆主动悬架控制技术[J].农业机械学报,2009,40(2):6-11. 被引量:24
  • 8王波雷,马孝义,郝晶晶.基于L-M优化算法的喷头射程神经网络预测模型[J].农业机械学报,2008,39(5):36-40. 被引量:12
  • 9袁寿其,沈艳宁,张金凤,袁建平.基于改进BP神经网络的复合叶轮离心泵性能预测[J].农业机械学报,2009,40(9):77-80. 被引量:21

二级参考文献27

共引文献53

同被引文献50

  • 1殷国玺,张展羽,张国华,郭相平.基于粒子群优化算法的农田多目标控制排水模型[J].农业工程学报,2009,25(3):6-9. 被引量:8
  • 2陈家才.颗粒饲料质量和生产效率的预计[J].粮食与饲料工业,2005(1):31-33. 被引量:2
  • 3李军国.饲料加工质量评价指标及其控制技术[J].饲料工业,2007,28(1):2-6. 被引量:4
  • 4R.L?we.Judging pellet stability as part of pellet quality FeedTechnology. View Record in Scopus Citing articles . 2005
  • 5Moritz.J.S,Wilson.K.J,Cramer K R,et al.Effect of formulationdensity,moisture,and surfactant on feed manufacturing,pelletqualityand broiler performance. The Journal of Applied PoultryResearch . 2002
  • 6N.P.Buchanan,J.S.Moritz.Main effects and interactions ofvarying formulation protein,fibber,and moisture on feed manu-facture and pellet quality. Journal of Application and PoultryResearch . 2009
  • 7Wilson.S.Feed quality control from specification to finishedproduct. 9th European Poultry Conference I . 1994
  • 8Miladinovic.D,Svihus.B.To the better physical pellet qualitythrough the pellet press settings. . 2010
  • 9John.Payne,Wolter.Rattink,Ted.Smith,et al.The PelletingHandbook. . 2001
  • 10Israelsen.M,Busk.J,Jensen.J.Pelleting properties of dairycompounds with molassed,alkali-treated straw and other byprod-ucts. Feedstuffs . 1981

引证文献3

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部