期刊文献+

基于粗糙集的多目标线性规划分类规则提取研究 被引量:2

Research on Rule Extraction from MCLP Classification Model Based on Rough Set
下载PDF
导出
摘要 作为一种有效地分类方法,多目标线性规划已经被广泛应用到商业问题中。针对以数学模型表示的分类结果解释性差的问题,本文研究从线形规划分类模型中提取易于理解的分类规则的方法,打开McLP分类模型的"黑箱"。并利用粗糙集理论对MCLP分类模型不能区分的不确定区域进行表示和规则提取,提出了基于粗糙集的MCLP分类模型知识提取方法和算法。实验结果表明,该方法能够从分类结果中提取易于理解的规则并提高了MCLP的分类准确度。 As an effective model for classification,Multiple Criteria Linear Programming(MCLP)has been widely used in business intelligence.However,a possible limitation of MCLP is that it generates unexplainable black-box models which can only tell us results without reasons.To overcome this shortage,in this paper,we present a knowledge mining strategy based on rough set which mines explainable decision rules from black-box MCLP models.In the proposed approach,we use the rough set theory to express the uncertainty region.Finally,empirical studies on real world credit card data sets demonstrate that our method can effectively extract explicit rules from MCLP model and also improve the classification accuracy of MCLP.
出处 《情报学报》 CSSCI 北大核心 2011年第6期591-597,共7页 Journal of the China Society for Scientific and Technical Information
基金 国家自然科学基金(70921061 71071151 90718042 70840010 70531040) 中国科学院研究生院院长基金(A类)(085102HN00) 中央财经大学“211工程”三期资助 中央财经大学学科建设基金资助
关键词 多目标线性规划 分类 规则提取 粗糙集 multiple criteria linear programming classification rule extraction rough set
  • 相关文献

参考文献14

  • 1Shi Y.Multiple criteria and multiple constraint levels linear programming:concepts,techniques and applications[J].World Scientific Pub Co Inc:New Jersey,2001.
  • 2Kou G.Multi-Class Multi-Criteria Mathematical Programming and its Applications in Large Scale Data Mining Problems[D].University of Nebraska Omaha,2006.
  • 3Kou G,Peng Y,Yan N,et al.Network Intrusion Detection by Using Multiple-Criteria Linear Programming[C] //2004 International Conference on Service Systems and Service Management,Beijing,2004:806-809.
  • 4Zhang P,Zhang J L,Shi Y.A New Multi-Criteria Quadratic-Programming Linear Classification Model for VIP E-Mail Analysis[C] //Proceedings of the Internati-onal Conference on Computational Science 2007,Part II,LNCS 4488,Springer,Berlin,2007:499-502.
  • 5Kwak W,Shi Y,Cheh J J.Firm bankruptcy prediction using multiple criteria linear programming data mining approach[J].Advances in Financial Planning and Forecasting,2006(2):27-49.
  • 6Kwak W,Shi Y,Eldridge S et al.Bankruptcy prediction for japanese firms:using multiple criteria linear program-ming data mining approach[J].International Journal of Business Intelligence and Data Mining,2006,1(4):401-416.
  • 7Gallant S I.Connectional expert systems[J].Communications of the ACM,1988,31 (2):152-169.
  • 8Andrews R,Diederich J,Tickle A B.Survey and critique of techniques for extracting rules from trained artificial neural networks[J].Knowledge-Based Systems,1995,8 (6):373-389.
  • 9Nunez H,Angulo C,Catala A.Rule based learning systems from SVMs[C].European Symposium on Artificial Neural Networks Proceedings,2002:107-112.
  • 10Fung G,Sandilya S,Rao R B.Rule extraction from linear support vector machines[C].Proceeding of KDD'05,2005:32-40.

同被引文献41

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部