期刊文献+

基于模糊-神经网络的肤色像素检测算法

A Skin Pixel Detection Algorithm Based on Fuzzy-Neural Network
原文传递
导出
摘要 肤色像素检测技术是成人图像识别、人脸识别等与人体相关的图像识别系统的基础和重要组成部分。为了提高肤色像素检测的准确度,本文提出一种模糊理论与 FP 神经网络(Forward Propagation Neural Network)相结合的肤色像素检测算法。算法首先通过模糊理论和直觉模糊理论提取待识别像素的颜色特征,构成特征向量,其中包括像素对常见肤色像素颜色值的隶属度和犹豫度,为完整的表达肤色像素的特征,再加入粗糙度特征进行补充;然后训练出 FP 神经网络,对所提取的特征向量进行肤色像素与非肤色像素的分类。实验证明,该算法能够提高肤色像素检测的准确度,可以有效地应用在有关人体的识别系统中。 Skin pixel detection technique is a basic and important part of image recognition system related to human being,such as adult image recognition,face recognition,etc.In order to improve the precision of skin pixel detection technique,a skin pixel detection algorithm that combines fuzzy theory with Forward Propagation(FP) Neural Network is proposed.The algorithm composes a feature vector based on extracted color features of the pixel through fuzzy theory and intuitionistic fuzzy theory.The feature vector includes membership and hesitancy degree of the pixel to common skin pixels.Roughness is a supplementary feature in the feature vector in order to completely express the feature of skin pixel.Then the algorithm is used to train a FP neural network and the feature vectors are classified into skin pixels and non-skin pixels.Experiment shows that the algorithm could improve the precision of skin detection and be effectively used in recognition systems related to human being.
作者 李怀颖
出处 《科技导报》 CAS CSCD 北大核心 2011年第17期58-64,共7页 Science & Technology Review
关键词 肤色像素检测 模糊 直觉模糊 FP 神经网络 skin pixel detection fuzzy intuitionistic fuzzy FP Neural Network
  • 相关文献

参考文献15

  • 1Kakumanu P, Makrogiannis S, Bourbakis N. A survey of skin-color modeling and detection methods [J]. Pattern Recognition, 2007, 40 (3): 1106-1122.
  • 2陈锻生,刘政凯.肤色检测技术综述[J].计算机学报,2006,29(2):194-207. 被引量:118
  • 3Brown D, Craw I, Lewthwaite J. A SOM based approach to skin detection with application in real time system [C]. British Machine Vision Conference, Manchester, UK, Sept 10-13, 2001.
  • 4Nayak A, Chaudhuri S. Self-induced color correction for skin tracking under varying illumination [C]. IEEE International Conference on Image Processing, Barcelona, Spain, Sept 14-17, 2003.
  • 5Kakumanu P, Makrogiannis S, Bryll R, et al. Image chromatic adaptation using ANNs for skin color adaptation [C]. 16th IEEE International Conference on Tools with Artificial Intelligence, Florida, USA, Nov 15- 17, 2004.
  • 6王攀,万君康,冯珊.创建计算智能的新方法——软计算的若干问题研究[J].武汉理工大学学报(交通科学与工程版),2004,28(4):618-621. 被引量:4
  • 7Atanassov K. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 2 (1): 87-96.
  • 8张磊,林福宗,张钹.基于前向神经网络的图像检索相关反馈算法设计[J].计算机学报,2002,25(7):673-680. 被引量:12
  • 9王向阳,胡峰丽.一种基于位平面综合特征的彩色图像检索方案[J].计算机研究与发展,2007,44(5):867-872. 被引量:9
  • 10Phung S L, Bouzerdoum A, Chai D. Skin segmentation using color pixel classification: Analysis and comparison[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2005, 27(1): 148-154.

二级参考文献155

共引文献139

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部