期刊文献+

广州亚运海心沙工程项目管理方法的理论创新与实践 被引量:7

Theoretic Innovations and Their Applications of Construction Project Management Method in Haixinsha Engineering
原文传递
导出
摘要 在概括现代工程项目两个显著特征的基础上,对海心沙项目进行了简要介绍。通过对该工程与一般大型工程项目特征的对比分析,全面总结和介绍该工程项目若干新的管理思想与方法。这些方法主要包括互适性的项目管理新机制、诊断工程项目实施状态的新方法、"四分度"工程项目进度控制新技术、基于Hall原理的三维结构工程管理分析系统、工程项目"五日"监管新技术、多层次动态管理的项目文化新模式以及基于循证科学的工程质量管理新方法。 By summing up two characteristics of modern construction project,Haixinsha engineering project has been briefly introduced.Some new management thoughts and methods about the project are recommended on the basis of contrasting Haixinsha engineering project with common large project,which include a new compatibility mechanism to project management organization,a new method to diagnose project implement state,a new technique named four parts to control project schedule,a new management system based on Hall theory,a new method to supervise project,a new multilayer management model to project culture as well as a new method to manage engineering quality based on evidenced science.
出处 《建筑经济》 2011年第6期6-8,共3页 Construction Economy
关键词 工程项目 显著特征 管理方法 创新 engineering project salient feature management method innovation
  • 相关文献

参考文献3

二级参考文献15

  • 1傅鹏,张德运,马兆丰,孙钦东,MdJahangir Alam.Ad Hoc网络中基于模拟退火-蚁群算法的QoS路由发现方法[J].西安交通大学学报,2006,40(2):179-182. 被引量:7
  • 2毛宁,顾军华,谭庆,宋洁.蚁群遗传混合算法[J].计算机应用,2006,26(7):1692-1693. 被引量:12
  • 3彭沛夫,林亚平,胡斌,张桂芳.基于遗传因子的自适应蚁群算法最优PID控制[J].电子学报,2006,34(6):1109-1113. 被引量:21
  • 4杨耀红,汪应洛,王能民.工程项目工期成本质量模糊均衡优化研究[J].系统工程理论与实践,2006,26(7):112-117. 被引量:55
  • 5张维存,郑丕谔,吴晓丹.基于蚁群粒子群算法求解多目标柔性调度问题[J].计算机应用,2007,27(4):936-938. 被引量:12
  • 6Favuzza S, Graditi G, Sanseverino E.Adaptive and dynamic ant colony search algorithm for optimal distribution systems reinforcement strategy[J].Applied Intelligence, 2006,24 ( 1 ) : 31-42.
  • 7Shan M Y, Li G.Auto-adapted ant colony optimization algorithm for wavelet network and its applications[C]//2006 IEEE International Conference on Mechatronics and Automation, ICMA 2006,2006:2437-2442.
  • 8Musa R,Chen F F.Simulated annealing and ant colony optimization algorithms for the dynamic throughput maximization problem[J].Intemational Journal of Advanced Manufacturing Technology, 2008,37 (7/8) : 837-850.
  • 9Keramati A, Azadeh A, Ebrahimipour V, et al.Application of a hybrid genetic-ant colony algorithm for exploring the relationship between IT and performance of organizations[C]//IIE Annual Conference and Expo 2008,2008:1107-1112,.
  • 10Shelokar P S, Siarry P, Jayaraman V K, et al.Particle swarm and ant colony algorithms hybridized for improved continuous optimization[J].Applied Mathematics and Computation, 2007,188 ( 1 ) : 129-142.

共引文献16

同被引文献50

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部