期刊文献+

随机时滞Lotka-Volterra模型数值解的收敛性 被引量:3

Convergence of the Euler Scheme for Stochastic Delay Lotka-Volterra Model
原文传递
导出
摘要 通常情况下,随机时滞Lotka-Volterra模型没有解析解,因而数值逼近方法是研究其性质的有效工具.本文根据Euler数值方法,利用鞅不等式和Ito公式讨论了一类随机时滞Lotka-Volterra模型数值解的收敛性,给出了数值解收敛于解析解的条件.最后通过数值算例对数值计算方法进行了验证. In general,most of stochastic delay Lotka-Volterra models do not have explicit solutions,thus numerical approximation schemes are invaluable tools for exploring their properties. According to the Euler method,using martingale inequality and Ito formula,the numerical approximation for a class of stochastic delay Lotka-Volterra model was discussed.In the last section,a numerical example is given.
出处 《生物数学学报》 CSCD 北大核心 2011年第1期64-72,共9页 Journal of Biomathematics
基金 国家自然科学基金资助项目(11061024)
关键词 ITO公式 EULER法 随机时滞Lotka-Volterra模型 Ito formula Euler method Stochastic delay Lotka-Volterra model
  • 相关文献

参考文献15

  • 1Mao X. Stochastic Differential Equations and Applications[M]. New York: Harwood, 1997.
  • 2Hofmann N, Platen E. Stability of weak numerical schemes for stochastic differential equations[J]. Computers & Mathematics with Applications, 1994, 28(10):45-57.
  • 3Ronghua L, Hongbing M, Qin C. Exponential stability of numerical solutions to SDDEs with Markovian switching[J]. Applied Mathematics and Computation, 2006, 174(2):1302-1313.
  • 4Ahmad A, Rao M R M. Asymptotically periodic solutions of n-competing species problem with time delay[J]. Journal of Mathematical Analysis and Applications, 1994, 186(2):557-571.
  • 5Bereketoglu H, Gyori I. Global asymptotic stability in a nonautonomous Lotka-Volterra type system with infinite delay[J], ournal of Mathematical Analysis and Applications, 1997, 210(1):279-291.
  • 6Xue-zhong He, Gopalsamy K. Persistence, attractivity, and delay in facultative mutualism[J]. Journal of Mathematical Analysis and Applications, 1997, 215(1):154-173.
  • 7Kuang Y, Smith H L. Global stability for infinite delay Lotka-Volterra type systems[J]. Journal of Differential Equations, 1993, 103(2):221-246.
  • 8Gopalsamy K. Stability and Oscillations in Delay Differential Equations of Population Dynamics[M]. Dordrecht: Kluwer Academic Publishers, 1992.
  • 9Teng Z, Yu Y. Some new results of nonautonomous Lotka-Volterra competitive systems with delays[J]. Journal of Mathematical Analysis and Applications, 2000, 241(2):254-275.
  • 10谭德君.具有生育脉冲的Lotka-Volterra合作系统的正周期解的存在性[J].生物数学学报,2004,19(4):414-420. 被引量:7

二级参考文献5

共引文献21

同被引文献9

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部