摘要
主要利用时滞微分方程中Hopf分支理论探讨时滞Nicholson's Blowflies方程中行波解随时滞量τ大小变化的分支行为.结果发现时滞量经过某一数值τ_0=1/(cω_0) arcsin-cω_0/p时,原系统会产生分支现象,最终导致形成周期性行波解.
Mainly employing Hopf bifurcation theory of delayed differential equation to study the bifurcation behavior of the traveling wave solution of the delayed Nicholson's Blowflies equation as the delayed termτchanges.The results showed that when the delayed termτpass throughτ_0=1/(cω_0)arcsin(-cω_0)/p,the original system will take place bifurcation phenomenon and eventually lead to become the periodic traveling wave solution.
出处
《生物数学学报》
CSCD
北大核心
2011年第1期81-86,共6页
Journal of Biomathematics
基金
安康学院(2008AKXY025)
(AYQDZR200906)