期刊文献+

时滞Nicholson's Blowflies方程中行波解的Hopf分支 被引量:3

Hopf Bifurcation of Traveling Wave of Delayed Nicholson's Blowflies Equation
原文传递
导出
摘要 主要利用时滞微分方程中Hopf分支理论探讨时滞Nicholson's Blowflies方程中行波解随时滞量τ大小变化的分支行为.结果发现时滞量经过某一数值τ_0=1/(cω_0) arcsin-cω_0/p时,原系统会产生分支现象,最终导致形成周期性行波解. Mainly employing Hopf bifurcation theory of delayed differential equation to study the bifurcation behavior of the traveling wave solution of the delayed Nicholson's Blowflies equation as the delayed termτchanges.The results showed that when the delayed termτpass throughτ_0=1/(cω_0)arcsin(-cω_0)/p,the original system will take place bifurcation phenomenon and eventually lead to become the periodic traveling wave solution.
机构地区 安康学院数学系
出处 《生物数学学报》 CSCD 北大核心 2011年第1期81-86,共6页 Journal of Biomathematics
基金 安康学院(2008AKXY025) (AYQDZR200906)
关键词 时滞Nicholson's Blowflies方程 行波解 HOPF分支 Delayed Nicholson's Blowflies equation Traveling wave solution Hopf bifurcation
  • 相关文献

参考文献7

  • 1Dahe Feng, Juntiang Lfi, Jibin Li, et al. Bifurcation studies on traveling wave solutions for nonlinear intensity Klein-Gordon equation[J]. Applied Mathematics and Computation, 2007, 189, 271-284.
  • 2Lin Jinbin, Cheng Cuan rong. Bifurcation of traveling wave solution for Four classes of nonlinear wave equations[J]. International Journal of Bifurcation and chaos, 2005, 15(12):3973-3998.
  • 3Li L. Stability and Hopf bifurcation of a differential delay system[J]. Journal of Biomathematies, 2002, 17(2):157-164.
  • 4Wang Weiming, Ling Li, Jin Y with constant rate harvesting[J] Joseph W.-H. So, Xingfu Zou. Mathematics and Computation, Stability and hopf bifurcation analysis of a delayed predator-prey model Journal of Biomathematics, 2009, 24(4):577-590.
  • 5Traveling waves for the diffusive Nicholson blowflies equation[J]. Applied 2001, 122, 385-392.
  • 6Hassard B, Kazarinoff N, Wan Y. Theory and Application of Hopf bifurcation[M]. Cambridge:Cambridge University Press, 1981.
  • 7Hale J K. Theory of Functional Equations[M]. New York:Springer-Verlag, 1977.

同被引文献28

  • 1谭欣欣,冯恩民,沈伯骞.双曲线边界二次系统单中心环域的Poincaré分支[J].大连理工大学学报,2005,45(2):298-302. 被引量:3
  • 2邵仪,赵育林.一类双中心平面二次系统的Abel积分零点个数[J].数学学报(中文版),2007,50(2):451-460. 被引量:5
  • 3Hassard B,Kazarinoff D,Wan Y.Theory and Applications of Hopf Bifurcation[M].Cambridge:Cambridge University Press,1981.
  • 4Ruan S,Wei J.On the zeros of transcendental functions with applications to stability of delay differential equations with two delays[J].Dynamic Analysis of Spatial Structures Session Organizer,2003,10(6):863- 874.
  • 5Song Y,Peng Y.Stability and bifurcation analysis on a Logistic model with discrete and distributed delays[J]. Applied Mathematics and Computation,2006,181(2):1745-1757.
  • 6May R M.Time delay versus stability in population models with two and three trophic levels[J].Ecology, 1973,4(2):315-325.
  • 7Yan X-P,Zhang C-H.Hopf bifurcation in a delayed Lokta-Volterra predator+prey system[J].Nonlinear Analysis:Real World Applications,2008,9(1):114-127.
  • 8Ma Z,Huo H.Stability and Hopf bifurcation analysis on a predator-prey model with discrete and distributed delays[J].Nonlinear Analysis:Real World Applications,2009,10(2):1160-1172.
  • 9Chen Y,Song C.Stability and Hopf bifurcation analysis in a prey-predator system with stage-structure for prey and time delay[J].Chaos Solitons Fractals,2008,8(1):1104-1114.
  • 10Meng X,Wei J.Stability and bifurcation of mutual system with time delay[J].Chaos,Solitons and Fractals, 2004,21(3):729-40.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部