期刊文献+

Sublinear Elliptic Equation on Fractal Domains

Sublinear Elliptic Equation on Fractal Domains
原文传递
导出
摘要 This paper investigates sub-linear elliptic equations on self-similar fractal sets. With an appropriately defined Laplacian, we obtain the existence of nontrivial solutions of sub-linear elliptic equations -△u=λu- a(x)|u|q-1u-f(x,u),with zero boundary Dirichlet conditions. The results are obtained by using Mountain Pass Lemma and Saddle Point Theorem.
作者 HE Zhenya
出处 《Journal of Partial Differential Equations》 2011年第2期97-113,共17页 偏微分方程(英文版)
  • 相关文献

参考文献11

  • 1Kigami J., Analysis on Fractals. Cambridge University Press, 2004.
  • 2Kigami J., Harmonic calculus on p.c.f self-similar sets. Trans. Amer. Math. Soc., 335 (1993), 721-755.
  • 3Falconer J. K., Semi-linear PDES on self-similar fractals. Commun. Math. Phys., 206 (1999), 235-245.
  • 4Fukushima M. and Shima T., On a spectral analysis for the Sierpinski gasket. Potential Anal., 1 (1992), 1-35.
  • 5Falconer J. K. and Hu J., Non-linear elliptic equations on the Sierpinski gasket. J. Math. Anal. Appl., 240 (1999), 552-573.
  • 6Chen H. and He Z. Y., Semi-linear elliptic equations on fractal sets. Acta Math. Sci., 29 (2009), 222-242.
  • 7Chang K.-C., Critical Theory and Its Applications. (in chinese). Shanghai Science and Tech- nology Press, 1986.
  • 8Rabinowitz P. H., Minimax Methods in Critical Point Theory with Applications to Differential Equations. Expository Lectures form CBMS Regional Conference held at University of Miami, Amer. Math. Soc., Providence, RI, 1986.
  • 9Strichartz R. S., Some properties of Laplacian on fractals. J. Func. Anal., 164 (1999), 181-208.
  • 10Kolzov S. M., Harmonization and homogenization on fractals. Commun. Math. Phys., 153 (1993), 339-357.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部