期刊文献+

三维麦克斯韦方程的对称分裂时域有限差分方法能量守恒性分析

ENERGY CONSERVATION PROPERTIES OF THE SYMMETRIC SPLITTING FDTD METHODS FOR THE 3D MAXWELL'S EQUATIONS
下载PDF
导出
摘要 考虑三维电导率为零的麦克斯韦方程的对称分裂时域有限差分(SS—FDTD)方法的能量守恒性.通过新的能量方法与差分算子δx,δy,δz,笔者首次给出了数值逼近格式SS—FDTD在离散的H^1模下的能量守恒式,并证明了格式在离散的H^1模下的守恒性.数值算例验证了格式解的能量守恒性. We study the conservation of energy of the symmetric splitting finite - difference time - domain (SS -FDTD)methods of the 3D Maxwell's equations with zero conductivity (ο = 0). By using new energy methods and difference operator δx, δy ,δz ,we give the conservation of energy for the discrete H^1 -norn of SS -FDTD firstly, and prove that SS - FDTD is conserved. Numerical experiments verify energy conservation of the solution.
出处 《山东师范大学学报(自然科学版)》 CAS 2011年第2期1-5,共5页 Journal of Shandong Normal University(Natural Science)
基金 山东省优秀中青年科学家科研奖励基金资助项目(2007BS01020) 山东省自然科学基金资助项目(Y2008A19).
关键词 MAXWELL方程 算子分裂 能量守恒 对称分裂时域有限差分(SS—FDTD)方法 Maxwell' s equation operator splitting energy conservation symmetric splittingfinite - difference time - domain method
  • 相关文献

参考文献7

  • 1Yee K S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[ J]. IEEE Trans Antennas and Propagation, 1996,14:302 - 307.
  • 2葛德表,闫玉波.电磁波时域有限差分方法[M].西安:西安电子科技大学出版社,2005.
  • 3Zheng F, Chen Z, Zhang J. Toward the development of a three - dimensional unconditionally stable finite difference time - domain method [ J ]. IEEE Trans Microwave Theory Tech,2000, MTT- 48 : 1550 - 1558.
  • 4Gao L, Zhang B, Liang D. Splitting finite difference methods on staggered grids for the three dimensional time dependent Maxwell's equations [ J ]. Commun Comput Phys,2008 ,4 :405 - 432.
  • 5Chen W, Li X, Liang D. Energy- conserved splitting finite difference time -domain methods for Maxwell's equations in three dimensions [ J ]. SIAM J Numer Anal,2010,108:445 - 485.
  • 6黄懿.三维Maxwell方程并行时域有限差分方法研究[M].北京:中科院应用数学研究所,2007..
  • 7王长清.现代计算电磁学基础[M].北京:北京大学出版社,2006.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部