期刊文献+

A Two-Layer Model for Superposed Electrified Maxwell Fluids in Presence of Heat Transfer 被引量:1

A Two-Layer Model for Superposed Electrified Maxwell Fluids in Presence of Heat Transfer
下载PDF
导出
摘要 基于一个 modified-DarcyMaxwell 模型,二维,不可压缩并且二围住的层的热转移流动,通过触电的麦克斯韦,在多孔的媒介的液体被执行。为在一个电场下面的不稳定性的驱动力,在免费费用上施加的静电的力量在划分接口被积累。正常模式分析被认为学习骚乱层的线性稳定性。有边界条件的运动的线性化的方程的答案导致在生长率和波浪数字之间的一种含蓄的分散关系。这些方程是由威伯数字,雷纳兹数字, Marangoni 数字,无尺寸的传导性,和无尺寸的电的潜力的 parameterized。长波浪的格界面的稳定性被学习了。稳定性标准在在哪个稳定性,图被获得理论上被执行。在限制的格中,一些以前出版的结果能被认为我们的结果的格同样特别。雷纳兹数字在稳定性标准起一个使动摇的作用,这被发现,当抑制影响为增加 Marangoni 数字和麦克斯韦松驰时间被观察时。 Based on a modified-Darcy-Maxwell model, two-dimensional, incompressible and heat transfer flow of two bounded layers, through electrified Maxwell fluids in porous media is performed. The driving force for the instability under an electric field, is an electrostatic force exerted on the free charges accumulated at the dividing interface. Normal mode analysis is considered to study the linear stability of the disturbances layers. The solutions of the linearized equations of motion with the boundary conditions lead to an implicit dispersion relation between the growth rate and wave number. These equations are parameterized by Weber number, Reynolds number, Marangoni number, dimensionless conductivities, and dimensionless electric potentials. The case of long waves interfaciaJ stability has been studied. The stability criteria are performed theoreticaily in which stability diagrams are obtained. In the limiting cases, some previously published results can be considered as particular cases of our results. It is found that the Reynolds number plays a destabilizing role in the stability criteria, while the damping influence is observed for the increasing of Marangoni number and Maxwell relaxation time.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第6期1077-1094,共18页 理论物理通讯(英文版)
关键词 麦克斯韦 电气化 传热模型 MARANGONI 流体 Maxwell模型 叠加 静电作用力 modified-Darcy-Maxwell model, two layers stability, heat transfer, surface charges, porous media
  • 相关文献

参考文献27

  • 1M.A. Combarnous and S.A. Bories, Adv Hydrosci 10 (1975) 231.
  • 2S. Kimura, G. Schubart, and J.M. Straus, J. Fluid Mech. 100 (1980) 305.
  • 3H.A. Haus and J.R. Melcher, Electromagnetic Fields and Energy, Prentice Hall, Englewood Cliffs, New Jersey (1989).
  • 4D.A. Nield and A. Bejan, Convection in Porous Media, 2nd ed. Springer, New York (1999).
  • 5S.W. Joo and K. Hsieh, Fluid Dynamics Research 26 (2000) 203.
  • 6D.A. Nield, A. Bejan, Convection in Porous Media, third ed. Springer-Verlag, New York (2006).
  • 7W. Tan and T. Ma.suoka, Phys. Lett. A 360 (2007) 454.
  • 8W.C. Tan and T. Masuoka, Phys. Fluid 17 (2005) 023101.
  • 9D.A. Nield, Int. J. of Heat and Mass Transfer 46 (2003) 4351.
  • 10B.V. Shalini and K. Rathish, Commun Nonlinear Sci. Numer. Simul. 12 (2007) 1454.

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部