期刊文献+

Dynamic behavior and complexity of modulated optical micro ring resonator

Dynamic behavior and complexity of modulated optical micro ring resonator
原文传递
导出
摘要 The dynamic behavior of an optical micro ring resonator (OMRR) with an amplitude modulator positioned in the micro ring is investigated quantitatively by adopting a recently introduced quantifier, the permutation entropy (PE). The effects of modulation depth are focused on, and the roles of input power are considered. The two-dimensional (2D) maps of PE showing dependence on both modulation depth and input power are presented as well. PE values nearly increase with modulation depth. On the other hand, the optimal value of input power is achieved when the PE reaches its maximum. Thus, PE can successfully quantify the dynamics of modulated OMRR. Selecting the parameters in the region with high PE values would contribute to the complexity-enhanced OMRR-based chaotic communication systems. The dynamic behavior of an optical micro ring resonator (OMRR) with an amplitude modulator positioned in the micro ring is investigated quantitatively by adopting a recently introduced quantifier, the permutation entropy (PE). The effects of modulation depth are focused on, and the roles of input power are considered. The two-dimensional (2D) maps of PE showing dependence on both modulation depth and input power are presented as well. PE values nearly increase with modulation depth. On the other hand, the optimal value of input power is achieved when the PE reaches its maximum. Thus, PE can successfully quantify the dynamics of modulated OMRR. Selecting the parameters in the region with high PE values would contribute to the complexity-enhanced OMRR-based chaotic communication systems.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2011年第6期63-66,共4页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China (No. 60976039) the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20070613058)
关键词 Chaotic systems Communication systems MODULATION Chaotic systems Communication systems Modulation
  • 相关文献

参考文献20

  • 1K. Ogusu, H. Shigekuni, and Y. Yokota, Opt. Lett. 20, 2288 (1995).
  • 2K. Ogusu, IEEE J. Quantum Electron. 32, 1537 (1996).
  • 3K. Ikeda, H. Daido, and O. Akimoto, Phys. Rev. Lett. 45, 709 (1980).
  • 4P. P. Yupapin and W. Suwancharoen, Opt. Commun. 280, 343 (2007).
  • 5Y. Imai, S. Yamauchi, H. Yokota, T. Suzuki, and K. Tsuji, Opt. Commun. 282, 4141 (2009).
  • 6G. Genty, M. Lehtonen, and H. Ludvigsen, Appl. Phys. B 81, 357 (2005).
  • 7F. H. Suhaiiin, J. Ali, P. P. Yupapin, Y. Fujii, H. Ahmad, and S. W. Harun, Chin. Opt. Lett. 7, 778 (2009).
  • 8M. Mimuro, S. Yamauchi, K. Suzuki, and Y. Imai, Opt. Commun. 281, 469 (2008).
  • 9T. Suzuki, S. Wei, and Y. Imai, Opt. Rev. 17, 327 (2010).
  • 10R. Vicente, J. Dauden, P. Colet, and R. Toral, IEEE J. Quantum Electron. 41,541 (2005).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部