期刊文献+

Research on electrical pulse of 20-kV/30-Hz GaAs photoconductive switches

Research on electrical pulse of 20-kV/30-Hz GaAs photoconductive switches
原文传递
导出
摘要 Photoconductive semiconductor switches (PCSSs) are widely used in high power ultra-wideband source applications and precise synchronization control due to their high power low-jitter high-repetition-frequency. In this letter, a 14-mm gap semi-insulating GaAs PCSS biased under 20 kV is triggered by a 1064-nm laser with a repetition frequency of 30 Hz. Although the trigger condition is greater than the threshold of the lock-on effect, the high gain mode is not observed. The results indicate that the high gain mode of the PCSS is quenched by decreasing the remnant voltage of pulsed energy storage capacitor. Photoconductive semiconductor switches (PCSSs) are widely used in high power ultra-wideband source applications and precise synchronization control due to their high power low-jitter high-repetition-frequency. In this letter, a 14-mm gap semi-insulating GaAs PCSS biased under 20 kV is triggered by a 1064-nm laser with a repetition frequency of 30 Hz. Although the trigger condition is greater than the threshold of the lock-on effect, the high gain mode is not observed. The results indicate that the high gain mode of the PCSS is quenched by decreasing the remnant voltage of pulsed energy storage capacitor.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2011年第6期104-106,共3页 中国光学快报(英文版)
基金 supported by the National Natural Science Foundation of China (Nos. 50837005 and 10876026) the Foundation of the State Key Laboratory of Electrical Insulation for Power Equipment (No. EIPE09203) the National Basic Research Program of China (No.2007CB310406)
关键词 Electric switchgear Gallium alloys JITTER Photoconducting devices PHOTOCONDUCTIVITY Semiconducting gallium Semiconductor switches Electric switchgear Gallium alloys Jitter Photoconducting devices Photoconductivity Semiconducting gallium Semiconductor switches
  • 相关文献

参考文献10

  • 1W. Shi, J. Xui, and X.-C. Zhang, Chin. Opt. Lett. 1, 308 (2003).
  • 2W. Nunnally, IEEE Tran. Electron Devices 37, 2439 (1990).
  • 3L. Tian and W. Shi, J. Phys. D: Appl. Phys. 41, 115107 (2008).
  • 4F. Zutavern, J. Armijo, S. Cameron, G. Denison, J. Lehr, T. Luk, A. Mar, M. O'Malley, L. Roose, and J. Rudd, in Proceedings of IEEE 14th Pulsed Power Conference 591 (2004).
  • 5K. S. Kelkar, N. E. Islam, P. Kirawanich, C. M. Fessler, and W. C. Nunnally, IEEE Tran. Plasma Sci. 36, 287 (2008).
  • 6W. D. Prather, C. E. Baum, J. M. Lehr, J. P. O'Loughlin, S. Tyo, J. S. H. Schoenberg, R. J. Tortes, T. C. Tran, D. W. Scholfield, and J. Gaudet, IEEE Trans. Plasma Sci. 28, 1624 (2002).
  • 7W. Shi, L. Tian, Z. Liu, L. Zhang, Z. Zhang, L. Zhou, H. Liu, and W. Xie, Appl. Phys. Lett. 92, 043511 (2008).
  • 8J. Yuan, W. Xie, H. Liu, J. Liu, H. Li, X. Wang, and W. Jiang, IEEE Trans. Plasma Sci. 38, 3460 (2010).
  • 9L. Tian and W. Shi, J. Appl. Phys. 103, 124512 (2009).
  • 10W. Shi, H. Dai, and X. Sun, Chin. Opt. Lett. 1, 553 (2003).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部