期刊文献+

量子通信网络中高斯信道的研究

Gaussian Channel in Quantum Correspondence Network
下载PDF
导出
摘要 从量子Fokker-Plank方程出发,在量子通信网络中构造出一种可行的量子高斯信道。变换Fokker-Plank方程的解并代入互信息公式经过一系列的复杂运算,得到相干态表象中的量子动力学互信息方程,在此基础上,提出具有可行性的量子态并行传播方案。该方案将光子加密态的系数看成信号,将传递在量子高斯信道中的信息进行编码后输入,然后通过提取和解码光子加密态的系数得到输出端信息。利用携带量子信息的谐振子编码态在量子高斯信道中进行传递,与经典高斯信道相比具有量子并行性的优点。 Starting from the quantum Fokker-Plank equation,a viable quantum Gaussian channel was constructed in quantum correspondence network.The solution of the Fokker-Plank equation was transformed and it was substituted into the mutual information formula to complete a series of complex calculations.The quantum dynamics mutual information equation of coherent state representation was then obtained.Based on this,the feasible quantum states with parallel dissemination program were put forward.The encryption states coefficient of photons was taken as signal in the program;the information which will be passed in the quantum Gaussian channel was encoded from the input terminal;then the information by extracting and decoding the coefficient of photon encrypted state was obtained from the output terminal.Here,compared with the classical Gaussian channel,the harmonic oscillator encoded states which carrying quantum information transmits in the quantum Gaussian channel have advantages of quantum parallelism.
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2011年第3期385-388,共4页 Journal of Wuhan University of Technology:Information & Management Engineering
关键词 量子Fokker-Plank方程 量子通信网络 量子高斯信道 量子动力学互信息 量子并行性 quantum Fokker-Plank equation quantum correspondence network quantum Gaussian channel quantum dynamics mutual information equation quantum parallelism
  • 相关文献

参考文献10

  • 1郭光灿.量子信息引论[J].物理,2001,30(5):286-293. 被引量:39
  • 2NISET J,JAROMIR F J,NIOCLAL J C. No -Go theo- rem for Gaussian quantum error correction [ J ]. Phys Rev Lett,2009,102(12) : 102 - 104.
  • 3LUPO C, MANCINI S. Transitional behavior of quantum Gaussian memory channels [ J ]. Phys Rev A, 2010.81 (5) ,81 -83.
  • 4喀兴林.高等量子力学[M].北京:高等教育出版社,2000.65-67.
  • 5BI Q, FANG J Q, LIU G P. Quantum information density and network[ J]. Front Phys China,2009,4 ( 1 ) :38 -39.
  • 6BI Q,RUDA H E,ZHOU Z D. Dynamical equations of quantum information and Gaussian channel[ J ]. Physica A,2006(363) : 198 - 199.
  • 7XING Xiusan.Dynamic statistical information theory[J].Science China(Physics,Mechanics & Astronomy),2006,49(1):1-37. 被引量:3
  • 8FU Z Y. Information theory basic theory and applications [ M ]. Beijing: Publishing House of Electronics Industry, 2007 : 23 - 45.
  • 9MICHARL A N, ISAAC L C. Computation and quantum information [ M ]. England : Cambridge University Press,2000 : 109 - 120.
  • 10SHANNON C E. A mathematical theory of communication[J]. Bell Sys Tech J,1948(127) :379 -423.

二级参考文献10

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部