期刊文献+

全局自适应拟Monte Carlo技术在数字期权中的运用

Applying an Adaptive Monte Carlo Integration Algorithm with General Division Approach to Hedge Digital Option
下载PDF
导出
摘要 运用优化分层Monte Carlo模拟和比例分层Monte Carlo模拟两种方法计算数字期权的Δ值,结果表明优化分层Monte Carlo模拟计算的效果优于比例分层Monte Carlo模拟。针对优化分层Monte Carlo不能有效地配置模拟样本点资源以及计算速度较慢的缺点,采用全局自适应拟Monte Carlo模拟方法计算数字期权的Δ值,并对优化分层Monte Carlo模拟方法和全局自适应拟Monte Carlo模拟方法的计算结果进行比较。结果表明,在期权定价方面,全局自适应拟Monte Carlo模拟方法比优化分层Monte Carlo的计算精度和效率更高、计算方差和误差更小。 The Delta values of hedging digital option were calculated by Monte Carlo model with optimal stratified sampling(OSS-MC) and Monte Carlo model with proportional stratified sampling(PSS-MC).The results show that OSS-MC is more efficient than PSS-MC in calculating the Delta value.However,OSS-MC allocates simulation resources ineffectively and computes at slow speed.Considering the disadvantage of OSS-MC,adaptive Monte Carlo integration algorithm with general division was introduce to simulate the Delta value,and the results simulated by adaptive Monte Carlo integration algorithm were compared with general division and OSS-MC.It shows that the simulation results computed by the adaptive Monte Carlo integration algorithm are more accurate,more efficient with less variance and less error than that computed by OSS-MC.
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2011年第3期464-468,共5页 Journal of Wuhan University of Technology:Information & Management Engineering
基金 国家社会科学基金资助项目(06BJY107) 教育部2007年度"新世纪优秀人才支持计划"基金资助项目(NCET-07-0636)
关键词 比例分层MonteCarlo 优化分层 全局自适应拟Monte Carlo Monte Carlo with proportional stratified sampling(PSS-MC) optimal stratified sampling(OSS-MC) adaptive Monte Carlo with general division
  • 相关文献

参考文献9

  • 1MAHMOUD H A, HOUSSAM M A - R. An adaptive Monte Carlo integration algorithm with general division approach[ J]. Mathematics and Computers in Simulation ,2008,79 ( 1 ) :49 - 59.
  • 2DAHL L. An adaptive method for evaluating multidimensional contingent claims : part II[ J ]. International Journal of Theoretical and Applied Finance, 2003,6 (4) :327 - 353.
  • 3BASILEIOS P. Enhanced Monte Carlo methods for pricing and hedging exotic options [ D ]. Oxford:University of Oxford ,2005.
  • 4INGERSOLL J R,JONATHAN E. Digital contracts :sirepie tools for pricing complex derivatives [ J ]. Journal of Business ,2000,73 ( 1 ) :67 - 88.
  • 5BRANDIMARTE P. Numerical methods in finance and economics [ M ]. New York : John Wiley & Sons, 2006 : 267 - 287.
  • 6CORWIN J, PHELIM P B, KEN S T. Quasi - Monte Cado methods in numerical finance [ J ]. Management Science, 1996,42 (6) :936 - 937.
  • 7PAUL G. Monte Carlo methods in financial engineering [ M ]. Berlin : Springer, 2003:9 - 12.
  • 8MORO B. The full Monte [ J ]. Risk, 1995 ( 8 ) : 57 - 58.
  • 9罗付岩,徐海云.拟蒙特卡罗模拟方法在金融计算中的应用研究[J].数理统计与管理,2008,27(4):605-610. 被引量:17

二级参考文献6

  • 1Paul Glasserman. Monte Carlo methods in financial engineering [M]. Berlin: Springer, 2003: 281- 339.
  • 2Fox B L. Algorithm 647: implementation and relative efficiency of quasi random sequence generators [J]. ACM Transactions on Mathematical Software, 1986, 12(4): 362-376.
  • 3Owen A B. Variance with alternative scramblings of digital nets [J]. ACM Transactions on Modeling and Computer Simulation, 2003, 13(4): 363-378.
  • 4Brandimarte Paolo. Numerical methods in finance and Economics [M]. John Wiley & Sons 2006: 267-287.
  • 5Lakshmikantham V, Sen S K and Samanta T. Comparing random number generator susing Monte Carlo integration [J]. International Journal of Innovative Computing, Information and Control, 2005, 1(2): 143-165.
  • 6Syamal Kumar Sen, Tathagata Samanta and Andrea Reese. Quasi-versus pseudo-random generators: discrepancy complexity and integration-error based comparison [J]. International Journal of Innovative Computing, Information and Control, 2006, 2(3): 621-651.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部