期刊文献+

植物天然免疫性研究进展及其对作物抗病育种的可能影响 被引量:12

Recent Findings in Plant Innate Immunity and Possible Impacts on Crop Disease-resistance Breeding
下载PDF
导出
摘要 植物定植在充满各种病原菌的环境中却能健康生长,显示其拥有一套免疫系统以应对病原物的侵染。最近,人们发现植物免疫系统至少包括2个层次:第一层为病原相关分子模式(PAMP)激发的免疫性(PTI),即植物通过细胞表面模式识别受体(PRRs)对病原菌的PAMPs进行分子识别,从而启动植物的防卫反应;第二层为病原菌效应子激发的免疫性(ETI),即有些毒性强的病原菌通过产生效应子(effectors)来抑制PTI,从而突破植物的第一道防线,而植物又进化出新的分子受体(例如R基因编码的NBS-LRR蛋白质)以侦察病原菌效应子并启动第二道防卫反应。数亿年来,病原菌的侵染和植物的防卫交替进行,促进了病原菌和植物基因组的共进化。最新的研究还发现,黄单胞杆菌TAL effectors和寄主植物DNA的相互识别中,利用了精准的分子密码。TAL effector类蛋白识别植物靶基因的启动子序列,识别模式是2个氨基酸识别一个核苷酸。通过这种识别,TAL effector操控植物靶基因的表达,引起寄主植物的感病或抗病反应。上述抗病分子机制研究的突破,将对植物抗病育种产生重要影响。 Plants have been successfully living in such an environment in which there are myriads of potential microbial pathogens,indicating that plants possess an efficient immunity system.Recent studies have revealed that the plant immunity system consists of two layers of defense.The first layer,based on the sensitive perception of pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs) at the plant cell surface,is named as PAMP-triggered immunity (PTI).The second is called effector-triggered immunity (ETI),in which plants use additional receptors (such as R-gene products) to perceive pathogen virulence effectors that have evolved to suppress PTI.The conventional gene-for-gene resistance in plants belongs actually to ETI.For millions of years,natural selection has been driving pathogens to avoid ETI either by diversifying the recognized effectors or by acquiring additional effectors that suppress ETI.On the other hand,natural selection favors plant new R-genes that can recognize the newly acquired effectors in pathogen,resulting in new ETI to be triggered again.The latest studies have revealed the simple cipher that governs DNA recognition by TAL (transcription activator-like) effectors from plant pathogenic Xanthomonas.TAL effectors can specifically bind the target DNA of host plant with a novel protein-DNA binding pattern in which two amino acids recognize one nucleotide.Using this recognition code,TAL effectors can bind the promoter of target genes and induce the host diseases or resistance responses.Recent findings about plant innate immunity are reviewed in this paper and their possible applications in plant breeding for disease resistance are discussed.
出处 《作物学报》 CAS CSCD 北大核心 2011年第6期935-942,共8页 Acta Agronomica Sinica
基金 国家转基因生物新品种培育科技重大专项(2011ZX08001-002)资助
关键词 植物天然免疫 TAL效应子 植物-病原菌相互作用 分子识别密码 抗病育种 Plant innate immunity; TAL-effectors; Plant-pathogen interaction; Recognition code; Plant breeding for disease resistance;
  • 相关文献

参考文献70

  • 1Bill B. A Short History of Nearly Everything. New York: Broad- way Books, 2003. pp 188-202.
  • 2Butterfield N J. Probable proterozoic fungi. Paleobiology, 2005, 31:165-182.
  • 3Takken F L W, Tameling W I L. To nibble at plant resistance pro- teins. Science, 2009, 324:744-745.
  • 4Boiler T, He S Y. Innate immunity in plants: an arms race be- tween pattern recognition receptors in plants and effectors in mi- crobial pathogens. Science, 2009, 324:742-744.
  • 5Boch J, Scholze H, Schomack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 2009, 326: 1509-1512.
  • 6Moscou M J, Bogdanove A J. A simple cipher governs DNA recognition by TAL effectors. Science, 2009, 326:1501.
  • 7Jones J D G, Dangl J L. The plant immune system. Nature, 2006, 444:323-329.
  • 8Dangl J L, Jones J D G. Plant pathogens and integrated defense responses to infection. Nature, 2001, 411:826-833.
  • 9Ausubel F M. Are innate immune signaling pathways in plants and animals conserved? Nat Immunol, 2005, 6:973-979.
  • 10Chisholm S T, Coaker G, Day B, Staskawicz B J. Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 2006, 124:803-814.

二级参考文献16

  • 1李平,龙菊英,黄迎春,张燕,王金生.从水稻白叶枯病菌分离的avr Bs3家族新成员avr Xa3是具双重功能的无毒基因[J].自然科学进展,2004,14(7):767-773. 被引量:5
  • 2陈功友,邹丽芳,王邢平,向勇,王金生.水稻白叶枯病菌致病性分子遗传学基础[J].中国农业科学,2004,37(9):1301-1307. 被引量:33
  • 3Ronald P, Leung H. The rice genome: The most precious things are not jade and pearls. Science, 2002, 296: 58-59.
  • 4Leach J E, White F F. Bacterial avirulence genes. Annual Review of Phytopathology, 1996, 34:153-179.
  • 5Yang B, White F F. Diverse members of the AvrBs3/PthA family of type Ⅲ effectors are major virulence determinants in bacterial blight disease of rice. Molecular Plant-Microbe Interaction, 2004, 17(11):1192-1200.
  • 6White F F, Yang B, Johnson L B. Prospects for understanding avirulence gene function. Current Opinion in Plant Biology, 2000, 3:291-298.
  • 7Gabriel D W. The Xanthomonas avr/Pth gene family. In: Stacey G,Keen N T, ed. Plant-Microbe Interactions. v.4 New York: American Phytopathological Society Press, 1999: 54-62.
  • 8Simon R, Priefer U, Puhler A. A broad host range mobilization system for genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology, 1983, 1: 784-791.
  • 9De Feyter R, Kado C I, Gabriel D W. Small, stable shuttle vectors for use in Xanthomonas. Gene, 1990, 88: 65-72.
  • 10Maniatis T. Molecular Cloning: A Laboratory Manual. New York:Cold Spring Harbor Laboratory Press, 1992.

共引文献18

同被引文献208

引证文献12

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部