摘要
设E是一致凸Banach空间,K是E中非空闭凸集且是一个非扩张收缩核,T:K→E是具非空不动点集F(T):={x∈K:Tx=x}的非扩张映像.设{α_n},{β_n},{γ_n},{α′_n},{β′_n},{γ′_n}是[0,1]中实数列满足α_n+β_n+γ_n=α′_n+γ′_n+γ′_n=1,对任意初值x_1∈K,定义{x_n}如下(ⅰ)如果对偶空间E*具有Kadec-Klee性质,那么{x_n}弱收敛于T的某不动点x*∈F(T);(ⅱ)若T满足(A)条件,那么{x_n}强收敛于T的某不动点x*∈F(T).
Let E be a uniformly convex Banach space and K a nonempty convex closed subsetwhich is also a nonexpansive retract of E.Let T:K→E be a nonexpansive mapping withF(T):= {x∈K:Tx = x}≠Φ.Let α_n,β_n,γ_n,α_n',β_n',γ_n' be real sequences in[0,1]such thatα_n +β_n +γ_n =α_n'+β_n'+γ_n'= 1,starting from arbitrary x_1∈K,define the sequence {x_n} bywith the restrictionsγ_n∞,γ_n'∞.Then(i) If the dual E~* of E has the Kadec-Klee property,then weak convergence of a {x_n} to somex~*∈F(T) is proved;(ii) If T satisfies condition(A),then strong convergence of {x_n} to some x~*∈F(T) is obtained.
出处
《应用泛函分析学报》
CSCD
2011年第2期113-120,共8页
Acta Analysis Functionalis Applicata
关键词
非扩张非自映像
K.K性质
一致凸
nonexpansive non-self map
kadec-klee property
uniformly convex