期刊文献+

具有Dirichlet边界条件的一类拟线性椭圆方程组的多重解的存在性 被引量:1

Existence of Multiple Solutions for a Class of Quasilinear Elliptic Systems with Dirichlet Boundary Condition
下载PDF
导出
摘要 运用Ricceri三临界点定理,研究了一类具有Dirichlet边界条件的拟线性椭圆方程组问题,证明了该方程组在其非线性项满足某些新的条件时至少存在三个解. Existence and multiplicity results for quasilinear elliptic systems with variational structure have been broadly investigated.By using Ricceri's three critical points theorem,established the existence of at least three weak solutions to the Dirichlet boundary value problem.
出处 《应用泛函分析学报》 CSCD 2011年第2期154-160,共7页 Acta Analysis Functionalis Applicata
基金 国家自然科学基金(10771141) 浙江省自然科学基金(Y7080008)
关键词 Ricceri三临界点定理 拟线性椭圆方程组 变分法 three-critical-points theorem quasilinear elliptic system variational method
  • 相关文献

参考文献8

  • 1LIU Jingjing, SHI Xiayang. Existence of three solutions for a class of quasilinear elliptic systems involving the (p(x), q(x))-Laplacian[J]. Nonlinear Anal, 2009, 71:550 -557.
  • 2杨敏波,沈自飞.Dirichlet边界条件下一类拟线性椭圆方程组的多解性[J].浙江师范大学学报(自然科学版),2006,29(1):22-25. 被引量:1
  • 3FAN Xianling, ZHAO Dun. On the spaces L^P(x)(Ω) and W^m,p(x)(Ω)[J]. J Math Anal Appl, 2001, 263: 424-446.
  • 4Ricceri B. Existence of three solutions for a class of elliptic eigenvalue problems[J]. Math Comput Modelling, 2000, 32(11): 1485-1494.
  • 5Ricceri B. On a three critical points theorems[J]. Arch Math, 2000, 75(3): 220-226.
  • 6Zeidler E. Functional Analysis and Its Applications[M]. Vol. II/B, Springer, 1985.
  • 7Bonanno G. Some remarks on a three critical points theorem[J]. Nonlinear Anal, 2003, 54: 651-665.
  • 8Mihilescu Mihai, R-dulescu V. A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids[J]. Froc R Soc A, 2006, 462: 2625-2641.

二级参考文献9

  • 1Bensedik A,Bouchekif M.On certain nonlinear elliptic systems with indefinite terms[J].Electron J Dif Eq,2002(83):1-16.
  • 2Figueiredo D,Ding Y.Strongly indefinite functionals and multiple solutions of elliptic systems[J].Trans Amer Math Soc,2003,355(7):2973-2989.
  • 3Bozhkov Y,Mitidieri E.Existence and multiple solutions for quasilinear systems via fibering method[J].J Dif Eq,2003,190(1):239-267.
  • 4Ricceri B.On a three critical points theorems[J].Arch Math,2000,75(3):220-226.
  • 5Ricceri B.Existence of three solutions for a class of elliptic eigenvalue problems[J].Math Comput Modelling,2000,32(11):1485-1494.
  • 6Boccardo L,Figueiredo D.Some remarks on a system of quasilinear elliptic equations[J].Nonlinear Differ Equ Appl,2002,9 (1):309-323.
  • 7Anello G,Cordaro G.An existence theorem for the Neumann problem involving the p-Laplacian[J].J Convex Analysis,2003,10(1):185-198.
  • 8Bonanno G,Candito P.Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian[J].Arch Math,2003,80(4):424-429.
  • 9Bonanno G,Liverea R.Multiplicity theorems for the Dirichlet problem involving the p-Laplacian[J].Nonlinear Anal,2003,54(1):1-7.

同被引文献9

  • 1陈劲,赵富坤.某类非自治二阶系统具鞍点特征的周期解的存在性[J].宁夏大学学报(自然科学版),2006,27(4):305-307. 被引量:2
  • 2Mawhin J,WiUim M.Critical Point Theory and Hamiton System[M].New York: Springer-Ver leg, 1989.
  • 3C.Tang.Periodic Solutions For Nonauto-nomous Sec-ond Order System With Subli- near nonlinearity[J] . Proc.Amer. Math. Soc.11(126) (1998):3263-3270.
  • 4X.Wu,F.Zhao.Saddle Point Characteriz- ation of So lutions for Nonautonomous Second Order System s[J].Nonlinear Anal.54(2003):1-7.
  • 5Nurbek Aizmahin, Tianqing An. The existence of periodic solutions of non- autonomous second-order Hamiltonian systems[J]. Nonlinear Analysis: Theory,Methods & Applications, 2011, 74(14): 4862- 4867.
  • 6X wu. Saddle point characterization and multiplicity of periodic solutions of non-autonomous second order systems [J]. Nonlinear Analysis: Theory, Methods&Applica tions, 2004, 58 (7- 8): 899- 907.
  • 7H.Amann,Saddle Points and Mutiple Solutions of Differential Equat-ions[J].Math.Z.169(1979) : 127-166.
  • 8Gabriele Bonannao. A minimax inequ- ality and its applications to ordinary differential equations [ J].JMath Anal Appl, 2002, 270(1) :210-229.
  • 9许万银.一类拟线性Neumann问题的多重解[J].山东大学学报(理学版),2009,44(10):39-42. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部