摘要
基于文[1]中的单点精细积分方法,对色散方程Ut= aUxxx 提出了一种构造高稳定性三层五点(蛙跳)显格式的广义单点精细积分法.文中格式的局部截断误差为O(τ2 + h2),而稳定性条件为|R| ≤g(β)(其中g 对任意正实数是单调递增函数),是同类格式中最好的[2]。
Based on single\|point precise integration method in [1], a generalized single\|point precise integration method of three\|level five\|point explicit difference schemes with high stability for dispersion equation U t=aU xxx is proposed in this paper. Their local truncation errors are O(τ 2+h 2) and stability conditions are|R|≤f(β), where f is an increasing function of its variable. f(40)=10 and f(400)=100 etc. These results are much better than|R|≤0 3849 in [2] and seem to be the best for schemes of the same type at present.
出处
《计算力学学报》
CAS
CSCD
1999年第4期460-464,共5页
Chinese Journal of Computational Mechanics
关键词
色散方程
高稳定性
三层五点显格式
精细积分
dispersion equation
higher stability
three-level five-point explicit difference scheme
generalized single point precise integration