期刊文献+

一类偏微分方程的多分裂迭代并行解法 被引量:2

Multisplitting Iterative Parallel Algorithm for Solving Partial Differential Equations
下载PDF
导出
摘要 许多工程和物理应用问题的求解通常都归结为求微分方程数值解。基于偏微分方程的许多传统算法仅适应于串行机求解,及单机性能无法满足大规模科学与工程问题计算需求的考虑,本文针对一类偏微分方程,给出了相应的并行差分格式,并实现了多分裂迭代法并行求解,通过程序设计将其与红黑排序,共轭梯度法等并行算法比较,验证了多分裂迭代法在求解偏微分方程中更有利于实现并行,具有更好的扩展性。 Many researches of engineering and physical application are often ascribed to solving the numerical solution of differential equations.In consideration of the fact that the traditional partial differential equations algorithm only adapts to the single machine,whose the performance can't satisfy the needs of large scale computation in the process of dealing with the science and engineening issues,the relevant parallel difference form is proposed and the multisplitting iterative parallel algorithm is realized.By program design,it was compared with Red-Black ordering and conjugate gradient method.The result verifies that multisplitting iterative method is easier to achieve parallel and has much better augmentability.
出处 《现代电子技术》 2011年第12期55-56,60,共3页 Modern Electronics Technique
基金 河南省杰出青年基金(104100510018) 河南省高校科技创新人才支持计划(2008HASTIT029) 河南省教育厅科技攻关项目(2007520033)
关键词 并行差分格式 多分裂迭代法 红-黑排序 共轭梯度法 parallel difference form multisplitting interactive method red-black ordering conjugate gradient method
  • 相关文献

参考文献7

  • 1杭旭登,刘兴平,袁光伟,宋杰.红黑排序混合算法收敛速度分析[J].计算数学,2003,25(4):423-434. 被引量:8
  • 2常保柱.线性方程组及抛物型方程的几种并行解法[D].长春:吉林大学图书馆,2006.
  • 3丁协平,林炎诚,姚任之.解变分不等式的三步松弛混合最速下降法[J].应用数学和力学,2007,28(8):921-928. 被引量:8
  • 4STROUT M M, CARTER L, FERRANTE J, et al. Sparse tiling for stationary iterative methods[J]. Int'l Journal of High Performance Computing Applications, 2004, 18 (1) : 95-114.
  • 5TAVAKOLI R, DAVAMI P. A new parallel Gauss-Seidel method based on alternating group explicit method and domain decomposition method [J]. Applied Mathematics and Computation, 2007, 188 (1) : 713-719.
  • 6胡长军,张纪林,王珏,李建江.迭代空间交错条块并行Gauss-Seidel算法[J].软件学报,2008,19(6):1274-1282. 被引量:5
  • 7胡家赣.线性代数方程组的迭代算法[M].北京:科学出版社,1995:65-102.

二级参考文献30

  • 1胡家赣.线性代数方程组的迭代解法[M].科学出版社,1997..
  • 2Kinderlehrer D,Stampacchia G.An Introduction to Variational Inequalities and Their Applications[M].New York:Academic Press,1980.
  • 3Glowinski R.Numerical Methods for Nonlinear Variational Problems[M].New York:Springer,1984.
  • 4Jaillet P,Lamberton D,Lapeyre B.Variational inequalities and the pricing of American options[J].Acta Applicandae Mathematicae,1990,21(2):263-289.
  • 5Konnov I.Combined Relaxation Methods for Variational Inequalities[M].Berlin:Springer,2001.
  • 6Oden J T.Qualitative Methods on Nonlinear Mechanics[M].New Jersey:Prentice-Hall,Engiewood Cliffs,1986.
  • 7Zeng L C.Iterative algorithm for finding approximate solutions to completely generalized strongly nonlinear quasivariational inequalities[J].Journal of Mathematical Analysis and Application,1996,201(1):180-194.
  • 8Zeng L C.Completely generalized strongly nonlinear quasi-complementarity problems in Hilbert spaces[J].Journal of Mathematical Analysis and Applications,1995,193(3):706-714.
  • 9Zeng L C.On a general projection algorithm for variational inequalities[J].Journal of Optimization Theory and Applications,1998,97 (2):229-235.
  • 10Xu H K,Kim T H.Convergence of hybrid steepest-descent methods for variational inequalities[J].Journal of Optimization Theory and Applications,2003,119(1):185-201.

共引文献14

同被引文献7

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部