摘要
许多工程和物理应用问题的求解通常都归结为求微分方程数值解。基于偏微分方程的许多传统算法仅适应于串行机求解,及单机性能无法满足大规模科学与工程问题计算需求的考虑,本文针对一类偏微分方程,给出了相应的并行差分格式,并实现了多分裂迭代法并行求解,通过程序设计将其与红黑排序,共轭梯度法等并行算法比较,验证了多分裂迭代法在求解偏微分方程中更有利于实现并行,具有更好的扩展性。
Many researches of engineering and physical application are often ascribed to solving the numerical solution of differential equations.In consideration of the fact that the traditional partial differential equations algorithm only adapts to the single machine,whose the performance can't satisfy the needs of large scale computation in the process of dealing with the science and engineening issues,the relevant parallel difference form is proposed and the multisplitting iterative parallel algorithm is realized.By program design,it was compared with Red-Black ordering and conjugate gradient method.The result verifies that multisplitting iterative method is easier to achieve parallel and has much better augmentability.
出处
《现代电子技术》
2011年第12期55-56,60,共3页
Modern Electronics Technique
基金
河南省杰出青年基金(104100510018)
河南省高校科技创新人才支持计划(2008HASTIT029)
河南省教育厅科技攻关项目(2007520033)
关键词
并行差分格式
多分裂迭代法
红-黑排序
共轭梯度法
parallel difference form
multisplitting interactive method
red-black ordering
conjugate gradient method