期刊文献+

基于改进阈值函数的小波去噪算法研究 被引量:11

Research of Wavelet De-noising Algorithm Based on Improved Threshold Function
下载PDF
导出
摘要 针对现有的小波阈值函数在阈值邻域内不具有高阶可导性,小波系数收缩缺乏灵活性,在此构造了一种具有过渡临界区域和收缩调和参数的阈值函数。根据白噪声的概率密度分布和滤波阈值的估计值确定过渡临界区域,细化阈值邻域内小波系数的处理。通过收缩调和参数调整小波系数的收缩程度,以提高滤波信号的信噪比。实验结果表明,在此构造的小波阈值函数能够在消噪和保留原有信号的弱特征之间获得较好的平衡,从而改善小波阈值滤波算法的性能。 An improved threshold function is presented based on critical region and adjustable parameters of shrinkage.While some of the threshold functions which have been brought forward by others,don't have high level of differentiability and shrinkage flexibility.The critical region,in which the wavelet coefficients are processed meticulously,is defined by the probability density distribution of white noise and the estimation of threshold.And the adjustable parameters of shrinkage,which determine the contraction degree of wavelet coefficients,are set up to improve the efficiency of filter.Particularly,according to the experiment,the new function can keep a good balance between noise elimination and edge feature holding,and the better de-noising effect is achieved.
出处 《现代电子技术》 2011年第12期61-64,68,共5页 Modern Electronics Technique
基金 国家"863"基金资助项目(2009AA11Z203)
关键词 小波系数 小波阈值 临界区域 收缩调和参数 wavelet coefficient wavelet threshold critical region adjustable parameters of shrinkage
  • 相关文献

参考文献13

二级参考文献57

  • 1王红梅,张科,李言俊.图像匹配研究进展[J].计算机工程与应用,2004,40(19):42-44. 被引量:107
  • 2郭小卫,田铮.基于小波域边缘方向特征的SAR图象噪声抑制方法[J].中国图象图形学报(A辑),2003,8(4):453-458. 被引量:11
  • 3贾承丽,匡纲要.SAR图像去斑方法[J].中国图象图形学报(A辑),2005,10(2):135-141. 被引量:24
  • 4张朝晖,潘春洪,马颂德.一种基于修正Frost核的SAR图像斑点噪声抑制方法[J].中国图象图形学报(A辑),2005,10(4):431-435. 被引量:14
  • 5周伟华,王鑫,罗斌.基于双树复小波变换的相位保持SAR图像降噪[J].中国图象图形学报,2007,12(5):805-810. 被引量:6
  • 6J. Lee, Speckle suppression and analysis for synthetic aperture radar, Optical Engineering, Vol. 25, pp. 636- 643, May. 1986.
  • 7V. Frost, J. Stiles, K. Shanmugan and J. Holtzman, A model for radar images and its application to adaptive digital filtering of muhiplicative noise, IEEE Transactions on Pattern Anal ysis and Machine Intelligence, Vol. 2, No. 4, pp. 157- 166, Feb. 1982.
  • 8D. Kuan, A. Sawchuk, T. Strand and P. Chavel, Adaptive restoration of images with speckle, IEEE Transactions on Acoustic Speech Signal Processing, Vol. 35, pp. 373-383, Mar. 1987.
  • 9A. Baraldi, F. Parmigiani, A Refined gamma MAP SAR speckle filter with improved geometrical adaptivity, IEEE Transactions on Geoseienee and Remote Sensing, Vol. 33, pp. 1245-1257 ,Sep. 1995.
  • 10J. Lee, Refined filtering of image noise using local statistics, Computer Graphics and Image Processing, Vol. 15, pp. 380-398,1951.

共引文献306

同被引文献118

引证文献11

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部