期刊文献+

基于遗传算法和BP模糊神经网络的红外步态识别

Infrared Gait Recognition Based on BP Fuzzy Neural Network and Genetic Algorithm
下载PDF
导出
摘要 为了提高红外步态识别精度的目的,采用分别基于小波描述子特征的模糊分类器识别和基于体形平均灰度图特征的贝叶斯分类器识别,再进行基于遗传算法和BP模糊神经网络的多分类器融合识别的新方法。做了基于中科院红外步态数据库的识别仿真实验,获得识别率、等错误率和累积匹配分值的实验数据及对比结果,得到多分类器融合识别比单分类器识别提高约10%识别率,降低约10%等错误率,完全收敛阶数提高1倍多的结论。具有识别精度高、收敛速度快的特点。 A new algorithm is proposed in order to improve the precision of the infrared gait recognition.The new method adopted the fuzzy classifier recognized by characteristics of the wavelet descriptors and the Bayesian classifier based on shape features of average grayscale respectively,and then performed the fusion recognition of multiple classifier based on genetic algorithm and BP fuzzy neural network.The recognition simulation experiment was made based on the infrared gait database of the Chinese Academy of Sciences.The comparison results and experimental data about the recognition rate,the error rate and the cumulative match score were gained.The conclusion shows that the multiple classifier fusion recognition increased about 10% at the recognition rate,reduced about 10% at the equal error rate,increased 1 times more at the complete convergence order number than the single classifier recognition.The characteristics of high accuracy and quick convergence are obvious.
作者 谭建辉
出处 《现代电子技术》 2011年第12期65-68,共4页 Modern Electronics Technique
基金 国家自然科学基金资助项目(60673132)
关键词 BP模糊神经网络 红外 步态识别 多分类器融合 遗传算法 BP fuzzy neural network infrared gait recognition multiple classifier fusion genetic algorithm
  • 相关文献

参考文献15

二级参考文献92

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部