期刊文献+

基于用户角色与行为的协同过滤推荐算法 被引量:1

Collaborative filtering algorithm based on users role and its behavior
下载PDF
导出
摘要 针对传统协同过滤推荐算法中存在评分数据稀疏性问题,以稀疏的用户打分来确定用户间的相似性可能并不准确。为此,提出了以用户行为对应一定分值代替空缺评分的方法来修正用户I-U评分矩阵,并基于用户角色以权重系数K来约束最近邻的计算。实验表明,改进的算法具有更优的推荐质量。 Aiming at sparsity of score data in the traditional collaborative filtering algorithm,the similarity among users base on this sparse ratings may not be accurate.For this reason,a collaborative filtering algorithm based on fixed I-U score matrix and weighted coefficient K to constrain the nearest neighbor calculation was proposed.The fixed I-U score matrix was presented by a certain percentile of user behavior instead of vacancies scoring.The weighted coefficient K was based on user role.Experiments show that the improved algorithm has better recommendation quality.
出处 《桂林电子科技大学学报》 2011年第3期230-233,共4页 Journal of Guilin University of Electronic Technology
关键词 协同过滤 I-U评分矩阵 最近邻 用户角色 用户行为 collaborative filtering I-U score matrix nearest neighbor user role user behavior
  • 相关文献

参考文献10

  • 1王茜,杨莉云,杨德礼.面向用户偏好的属性值评分分布协同过滤算法[J].系统工程学报,2010,25(4):561-568. 被引量:24
  • 2黄晓斌.基于协同过滤的数字图书馆推荐系统研究[J].大学图书馆学报,2006,24(1):53-57. 被引量:33
  • 3NEUHOLD E J. Personalization and user profiling and recom- mender systems [C ]//WIAM Informations Management ProseminarSS, Viennar:[s. n],2003.
  • 4KIN B M, LI Q, PARK C S,et al. A new approach for combi- ning content -based and collaborative filters[J]. Journalof Intel- ligent Information Systems, 2006,27: 79-91.
  • 5周敏,周继鹏,丁光华.PSL:针对大规模数据应用的并行Slope One算法[J].科学技术与工程,2010,10(3):711-714. 被引量:5
  • 6Tian Wei, Xu Jing , Pend Yuqing. CF improvement based on probahilistic analysis of discrete explicit rating vector[C]//Pro- ceedings of the 2009 First IEEE International Conference on In- formation Science and Engineering. Washington DC, USA:[s. n], 2009,9 : 814-816.
  • 7SARWAR B, KARYPIS G, KONSTAN J. et al. Item-based collaborative filtering recommendation algorithms[C]//Proc of the 10th Int'l World Wide Web Conf. New York:ACM Press, 2001 : 285-295.
  • 8BREESE J, HECKERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[C]//Proc of the 14th Con on Uncertainty in Artificial Intelligent. San Francisco: [s. n], 1998:43-52.
  • 9HERLOCKER J L, KONSTAN J A, TERVEEN L. G. Evalua- ting collaborative filtering recommendation system[J]. ACM Trans actions on Information System, 2004,22 (1) : 5-53.
  • 10冯克鹏.基于协同过滤的数字图书馆推荐系统研究[J].软件导刊,2010,9(5):16-18. 被引量:9

二级参考文献29

  • 1黎星星,黄小琴,朱庆生.电子商务推荐系统研究[J].计算机工程与科学,2004,26(5):7-10. 被引量:46
  • 2邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 3余力,刘鲁.电子商务个性化推荐研究[J].计算机集成制造系统,2004,10(10):1306-1313. 被引量:104
  • 4陈晋川,张晓刚,王青,李明树.基于CoP建模的协作过滤推荐方法[J].计算机工程与设计,2004,25(12):2151-2153. 被引量:3
  • 5Linden G, Smith B, York J. Amazon. com recommendations: item-to-item collaborative filtering. 1EEE Intemet Computing, 2003 ;07 ( 1 ) : 76-80.
  • 6Das A, Datar M, Garg A, et al. Google news personalization: scalable online collaborative filtering.//WWW 07 : Proceedings of the 16th international conference on World Wide Web. New York, NY, USA: ACM. 2007:271--280.
  • 7Lemire D, Maclachlan A. Slope One predictors for online rating-based eoUaborative filtering, In : SIAM Data Mining ( SDM' 05 ) , Newport Beach, California, April 21--23, 2005.
  • 8Dean J, Ghemawat S. Mapreduce : simplified data processing on large clusters. In: OSDI. 2004:137--150.
  • 9Hadoop. http ://hadoop. apache, org/.
  • 10Lemire D, McGrath S. Implementing a rating-based item-to-item recommender system. In: PHP/SQL,On delelle, com,2005 :D-01.

共引文献61

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部