期刊文献+

具有Beddington-DeAngelis感染函数的时滞HIV-1模型稳定性 被引量:1

Stability of delayed HIV-1 model with Beddington-DeAngelis functional response
下载PDF
导出
摘要 利用特征方程和稳定性理论,研究了一类具有Beddington-DeAngelis感染函数的时滞HIV-1模型的动力学性质,得到了无感染平衡点全局稳定和感染平衡点局部渐近稳定的充分条件。 A delayed HIV-1 model with Beddington-DeAngelis functional response was considered.Using characteristic equation and the stability theory,some sufficient conditions ensuring the global stability of the uninfected equilibrium and the local asymptotic stability of the infected equilibrium were obtained.
出处 《桂林电子科技大学学报》 2011年第3期246-249,共4页 Journal of Guilin University of Electronic Technology
基金 广西自然科学基金(2010GXNSFC013012)
关键词 HIV-1病毒 时滞 稳定性 HIV-1 virus delayed stability
  • 相关文献

参考文献2

二级参考文献43

  • 1UNAIDS and WHO. AIDS epidemic update 2009[J/OL]. http: / / data.unaids.org/pub /Report/ 2009 /2009_epidemic_update_en.pdf.
  • 2Perelson A S, Nelson P W. Mathematical analysis of HIV-1 dynamics in vivo[J]. SIAM Review, 1999, 41(1): 3-44.
  • 3Nowak M A, May R M. Virus Dynamics: Mathematical Principles of Immunology and Virology[M]. Oxford: Oxford University Press, 2000.
  • 4Wang Y, et al. Oscillatory viral dynamics in a HIV pathogenesis model incorporating antiretroviral therapy and time delay[J]. Mathematical Biosciences, 2009, 219:104-112.
  • 5Perelson A S, et al. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time[J]. Science, 1996, 271(5255): 1582-1586.
  • 6Nowak M A, Bangham C R M. Population dynamics of immune responses to persistent viruses[J]. Science, 1996, 272(5258): 74-79.
  • 7Nowak M, et al. Anti-viral drug treatment: dynamics of resistance in free virus and infected cell popula- tions[J]. Journal of Theoretical Biology, 1997, 184:2034217.
  • 8Ho D D, et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection[J]. Nature, 1995, 373(6510): 123-126.
  • 9De Leenheer P, Smith H L. Virus dynamics: a global analysis[J]. SIAM Journal of Applied Mathematics, 2003, 63(4): 1313-1327.
  • 10Wang L, Ellermeyer S. HIV infection and CD4^+ T cell dynamics[J]. Discrete and Continuous Dynamical System--Series B, 2006, 6(6): 1417-1430.

共引文献4

同被引文献12

  • 1NOWAK M A, BANGHAM C R M. Population dynamics responses to persistent viruses EJ~. Science, 1996, 272: 74-79.
  • 2BONHOEFFER S, COFFIN J M, NOWAK M A. Human immunodeficiency virus drug therapy and virus load[-J~. J Virol, 1997, 71:3275 3278.
  • 3SATO H, ORENSTEIN J, DIMITROV D, et al. Cell-to- cell spread of HIV-I occurs with minutes and may not involve the participation of virus particlesEJ~. Virology, 1992, 186: 712-724.
  • 4GUMMULURU S, KINSEY C M, EMERMAN M. An in vitro rapid-turnover assay for human immunodeficiency virus type 1 replication selects for cell to cell spread of virusEJ~. J Virol, 2000, 74 : 10882-10891.
  • 5CULSHAW R V, SHIGUI R, WEBB G. A mathematical model of cell-to cell spread of HIV-I that includes a time de- layI-J~. J Math Biol, 2003, 46:425-444.
  • 6CULSHAW R V, SHIGUI R, SPITERI R J. Optimal HIV treatment by maximising immune responseEJ~. J Math Biol, 2004, 48:545-562.
  • 7WANG X, YOU D T, SONG X Y. Global stability of a vi rus dynamics model with Beddington-DeAngelis incidence rate and CTL immune responseEJ~. Nonlinear Dyn, 2011, 66 : 825-830.
  • 8HUANG G, MA W B, YASUHIRO T. Global properties for virus dynamics model with Beddington DeAngelis func- tional response [- J 1. Appl Math Lett, 2009, 22 ( 11 ) : 1690-1693.
  • 9WANG X, YOU D T, SONG X Y. A delayed HIV I infec- tion model with Beddington DeAngelis functional response [-J~. Nonlinear Dyn, 2010, 62 : 67-72.
  • 10LILI Z H, YUAN R. Stability and bifurcation in a delayed predator-prey system with Beddington DeAngelis functional response~J~.J Math Anal Appl, 2004, 296:521 537.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部