期刊文献+

基于LS-SVM残差控制图的失控信号诊断

The Diagnosis of the out-of-control Signals Based on LS-SVM Residual Chart
下载PDF
导出
摘要 针对多变量统计过程控制中失控信号的诊断问题,提出了一种基于最小二乘支持向量机(LS-SVM)残差控制图的诊断方法,给出了基于LS-SVM残差控制图的构造方法与诊断程序,进行了实例分析与模拟分析,并与基于主成分分析的诊断方法进行了对比。研究结果表明:基于LS-SVM残差控制图的方法可以准确地诊断出失控变量,同时在小样本情况下依然适用。 In order to interpret the out of control signals in multivariate statistical process control,it proposes a method based LS-SVM residual chart,shows the detail about the method to develop LS-SVM residual chart,the diagnosis procedure,analysis of instance and simulation.It compares the method of LS-SVM residual chart with the methods of principal component analysis.The result shows that method of LS-SVM residual chart can diagnose out-of-control variables and correctly be used in small-size samples case.
出处 《中国制造业信息化(学术版)》 2011年第6期74-77,81,共5页
基金 国家自然科学基金资助项目(70872047) 国家自然科学基金重点项目(70931002)
关键词 残差控制图 T2控制图 LS-SVM残差控制图 Residual Chart T2-control Chart LS-SVM Residual Chart
  • 相关文献

参考文献11

  • 1Hotelling, H. The generalization of student' s ratio[J]. Annals of Mathemaatical Statistics, 1931,2(3) :360 - 378.
  • 2Bersimis S, Psarakis S, Panaretos J. Multivariate statistical process control charts: an overview[J]. Quality and Reliability Engineering International, 2008,23 ( 15 ) : 517 - 543.
  • 3杜福洲,唐晓青.基于PCA的多元质量控制与诊断方法研究[J].制造业自动化,2006,28(8):10-13. 被引量:6
  • 4Choi S W, Martin E B, Morris A J. Fault detection based on a maximum-likelihood principal component analysis mixture [J]. Industrial and Engineering Chemistry Research, 2005,44 (7):2 316-2 327.
  • 5Scholkopf B, Smola A J, M JuUer K. Nonlinear component analysis as a kernel eigen value problem [J]. Neural Computation, 1998,10(5) : 1 299 - 1 319.
  • 6Mason R L, Tracy N D, Young C H. Decomposition of T2 for multivariate control chart interpretation [J]. Journal of Quality Technology, 1995,27(2):99 - 108.
  • 7Mason R L, Young J C. Multivariate Statistical Process Control with Industrial Applications [M]. Philadelphia: ASA - SIAM, 2002.
  • 8Cook D F, Zobel C W, Nottingham Q J. Utilization of neural networks for the recognition of variance shifts in correlated manufacturing process parameters [ J ]. International Journal of Producttion Research,2001,39(17) :3 881- 3 887.
  • 9Hwarng H B, Detecting process mean shift in the presence of autocorrelation: a neural-networkBased monitoring scherne[J]. International Journal of Production Researeh, 2004, 42 ( 3 ): 573 - 595.
  • 10Guh R S. A hybrid hearning- based model for on - line detection and analysis of control chart patterns [ J ]. Computers& Industrial Engineering, 2005,49 ( 1 ) : 35 - 62.

二级参考文献4

  • 1YANG Q S.Model-based and data driven fault diagnosis methods with applications to process monitoring[D].A dissertation for the degree of doctor of philosophy in case western reserve university,2004.
  • 2ROBERT L M,YOUNG J C.Implementing multivariate statistical process control using hotelling's T2 statistic[J].Quality Progress,2001.
  • 3RASMUS B F B.Multivariate data analysis as a tool in advanced quality monitoring in the food production chain[J].Trends in food Science & Technology.2002,13:235-244.
  • 4CHEN K H.Data-rich multivariate detection and diagnosis using eigenspace analysis[D].A dissertation for the degree of Doctor of Philosophy in MIT,June 2001.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部