期刊文献+

Effects of Postharvest Hot Water and Hot Air Treatments on Storage Decay and Quality Traits of Kumquat (Fortunella japonica Lour. Swingle, cv. Ovale) Fruit

Effects of Postharvest Hot Water and Hot Air Treatments on Storage Decay and Quality Traits of Kumquat (Fortunella japonica Lour. Swingle, cv. Ovale) Fruit
下载PDF
导出
摘要 Heat treatments such as hot-water dipping (HWD), hot water rinsing and brushing (HWRB), and hot air treatment (HAT) have been applied on a wide range of horticultural crops to control postharvest decay and to maintain quality characteristics. In this study we compared the influence of hot-water dipping (HWD) for 2 rain at 50℃and hot air treatment (HAT) at 37 ℃ for 30 hours, on postharvest performance of kumquat (Fortunellajaponica Lour. Swingle, cv. Ovale) fruit. Decay development, transpiration rate (fruit weight loss), external appearance, and nutritive (sugars and organic acids) and functional properties (ascorbic acid, total phenolic compounds, and total antioxidant activity) were evaluated over 21 days' simulated shelf-life at 17 ℃. Untreated fruits were used as control. There was no visible damage to the fruit following HWD or HAT and after storage. However, while HWD and control fruit maintained their fresh appearance during the first 14 days of storage and were rated as fairly fresh after the 21 days, HAT fruits had lost their gloss and no longer appeared fresh. HWD did not affect fruit weight loss while HAT induced significant weight loss with respect to control. HAT did not significantly affect decay incidence after 14 days' storage but effectively reduced decay after 21 days'. HWD notably reduced decay development after 14 and 21 days of storage and proved significantly more effective than HAT. Neither HWD nor HAT significantly affected the nutritive and functional properties of fruit. Thus, present results indicate that while HWD can be applied on kumquats to control postharvest decay without impairing the quality traits, HAT conditions (treatment time and temperature) should be optimized, due to adverse effects to fruit quality.
出处 《Journal of Agricultural Science and Technology(B)》 2011年第1期89-94,共6页 农业科学与技术(B)
关键词 CITRUS DECAY heat treatment storage. 热空气处理 采后腐烂 品质性状 水果 存储 热水 衰减 诱导控制
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部