期刊文献+

聚类GO术语在基因表达差异研究中的应用 被引量:1

Clustering GO Terms Applied to Differential Gene Expression Detection
原文传递
导出
摘要 针对基因功能分类体系基因本体(Gene Ontology,GO)特殊的有向无环图特点,改进传统的用单个GO术语检测基因差异表达信号的缺陷,设计出"聚类GO术语提升差异表达检测(ScaGO)"算法.通过简单的输入对照和实验组表达谱上的全部基因表达信号,来研究一些比较新的差异表达功能组,有助于进一步解释基因差异表达的生物学意义,如疾病发病机制、药物作用机理等.将ScaGO和基于单GO术语差异分析法应用到急性淋巴细胞性白血病数据集和酵母Rap1 DNA绑定突变体差异表达数据集上,结果显示,ScaGO能比基于单GO术语差异分析法发现一些新的与差异表达相关联的功能类基因,对于指导实验具有积极意义. To improve individual GO term analysis algorithm for detecting differential gene expression,according to the directed acyclic graph structure property of gene classification system,Gene Ontology(GO),a novel and effective method named significant cluster analysis based on GO(ScaGO) was presented.The inputs of ScaGO were the expression values from a case-control microarrary experiment,aimed at detecting some novel differential expression changes.The results had shown some insights into gene expression difference at the functional level,towarded clarification of the process of pathological changes or mechanism of medicine.Both ScaGO and individual GO term analysis were applied to the acute lymphoblastic leukemia expression dataset and yeast Rap1 DNA-binding mutant dataset.Compared to individual GO term analysis,ScaGO was turned out to be more sensitive,and some novel differential expression changes which were mostly reported were mined successfully.It means that our ScaGO can provide the positive help in the experimental guidance.Fig 1,Tab 3,Ref 21
出处 《应用与环境生物学报》 CAS CSCD 北大核心 2011年第3期422-426,共5页 Chinese Journal of Applied and Environmental Biology
基金 科技部"十一五"支撑计划项目(No.2006BAF07B01)资助~~
关键词 基因本体 层次聚类 基因差异表达 语义相似性 gene ontology hierarchy clustering differential gene expression semantic similarity
  • 相关文献

参考文献21

  • 1Schena M, Shalon D, Heller R, Chai A, Brown PO, Davis RW. Parallel human genome analysis: microarray-based expression monitor in of 1000 genes. Proc Natl Acad Sci U S A, 1996, 93 (20): 10614-10619.
  • 2Baldi P, Long AD. A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes. Bioinformatics, 2001, 17 (6): 509-519.
  • 3Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000, 25 (1): 25-29.
  • 4Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, Georgescu C, Romero R. A systems biology approach for pathway level analysis. Genome Res, 2007, 17 (10): 1537-1545.
  • 5Trajkovski I, Lavrac N, Tolar J. SEGS: Search for enriched gene sets in microarray data. J Biomed Inform, 2008, 41 (4): 588-601.
  • 6Nam D, Kim SB, Kim SK, Yang S, Kim SY, Chu IS. ADGO: Analysis of differentially expressed gene sets using composite GO annotation. Bioinformatics, 2006, 22 (18): 2249-2253.
  • 7Chiaretti S, Li X, Gentleman R, Vitale A, Wang KS, Mandelli F, Foa R, Ritz J. Gene expression profiles of B-lineage adult acute lymphocytic leukemia reveal genetic patterns that identify lineage derivation and distinct mechanisms of transformation. Clin Cancer Res, 2005, 11 (20): 7209-7219.
  • 8Huber W, Heydebreck AV, Sueltmann H, Poustka A, Vingron M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics, 2002, 18: 96-104.
  • 9Yarragudi A, Parfrey LW, Morse RH. Genome-wide analysis of transcriptional dependence and probable target sites for Abf1 and Rap1 in Saccharomyces cerevisiae. Nucleic Acids Res, 2007, 35 (1): 193-202.
  • 10Resnik P. Using information content to evaluate semantic similarity in a taxonomy. Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, Canada, 1995. 448-453.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部