期刊文献+

一类糖酵解模型正平衡解的存在性分析 被引量:3

Existence Analysis of the Positive Steady-State Solutions for a Glycolysis Model
原文传递
导出
摘要 研究生化反应中具有代表性的一类糖酵解模型.运用先验估计讨论非常数正平衡解的不存在性,得到非常数正平衡解存在的必要条件.在常数平衡解Turing不稳定的基础上,利用度理论方法和解的先验估计,进一步给出非常数正平衡解存在的充分条件. This paper deals with a representative glycolysis model in biochemical reaction. We study the non-existence of non-constant positive steady-state solutions by using a priori estimates. A necessary condition for the existence of non-constant positive steady-state solutions is obtained. On the basis of Turing instability of constant steady-state solutions, the degree theory is combined with a priori estimates to give a sufficient condition for the existence of non-constant positive steady-state solutions.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2011年第4期553-560,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10971124) 教育部高等学校博士点专项基金资助项目(200807180004)
关键词 糖酵解模型 平衡解 先验估计 glycolysis model steady-state solutions a priori estimates
  • 相关文献

参考文献13

  • 1Higgins J., A chemical mechanism for oscillations of glycolytic intermediates in yeast cells, Proc. Natl. Acad. Sci. USA, 1964, 51(6): 989-994.
  • 2Bhargava S. C., On the higgins model of glycolysis, Bull. Math. Biol., 1980, 42(6): 829-836.
  • 3Peng-R., Shi J. P., Wang M. X., On stationary pattern of a reaction-diffusion model with autocatalysis and saturation law, Nonlinearity, 2008, 21(7): 1471-1488.
  • 4Sel'kov E. E., Self-oscillations in glycolysis, Eur. J. Biochem., 1968, 4(1): 79-86.
  • 5Davidson F. A., Rynne B. P., A priori bounds and global existence of solutions of the steady-state Sel'kov model, Proc. Roy. Soc. Edinburgh Sect. A, 2000, 130(3): 507-516.
  • 6Peng R., Qualitative analysis of steady states to the Sel'kov model, J. Differential Equations, 2007, 241(2): 386 -398.
  • 7Ashkenazi M., Othmer H. G., Spatial patterns in coupled biochemical oscillators, J. Math. Biol., 1978, 5(4): 305-350.
  • 8Segel L. A., Mathematical Models in Molecular and Cellular Biology, Cambridge: Cambridge University Press, 1980.
  • 9Goldbeter A., Nicolis G., An allosteric enzyme model with positive feedback applied to glycolytic oscillations, Prog. Thaor. Biol., 1976, 4: 65-160.
  • 10Othmer H. G., Aldridge J. A., The effects of cell density and metabolite flux on cellular dynamics, J. Math. Biol., 1978, 5(2): 169- 200.

同被引文献42

  • 1林振山,李湘如.准三分子模型的时空结构[J].数学物理学报(A辑),1989,9(2):183-191. 被引量:3
  • 2张丽,刘三阳.一类高次自催化耦合反应扩散系统的分歧和斑图[J].应用数学和力学,2007,28(9):1102-1114. 被引量:4
  • 3叶其孝 李正元.反应扩散方程引论[M].北京:科学出版社,1994.108,205.
  • 4陈兰荪,王东达.一个生物化学反应的振动现象[J].数学物理学报,1985,5(3):261-266.
  • 5Dahmlow P, Vanag V K, Mfiller S C. Effect of solvents on the pattern formation in a Belousov-Zhabotinsky reaction embedded into a microemulsion [ J]. Physical Review E, 2014, 89( 1): 010902.
  • 6Kondo S, Miura T. Reaction-diffusion model as a framework for understanding biological pat- tern formation[ J]. Science, 2010, 329(5999) : 1515-1520.
  • 7Turing A M. The chemical basis of morphogenesis[ J]. Philosophical Transactions of the Roy- al Society of London, Series B, Biological Sciences, 1952, 237(641) : 37-72.
  • 8Murray J D. Mathematical Biology H: Spatial Models and Biomedical Applications[ M]. 3rd ed. Berlin: Springer-Verlag, 2003.
  • 9Tyson J, Kauffman S. Control of mitosis by a continuous biochemical oscillation[ J ]. Journal of Mathematical Biology, 1975, 1(4) : 289-310.
  • 10Segel L A. Mathematical Models in Molecular and Cellular Biology [ M ]. Cambridge: Cam- bridge University Press, 1980.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部