期刊文献+

2×2-上三角算子矩阵谱的Fredholm扰动

Fredholm Perturbation of Spectra of 2×2-Upper Triangular Matrices
原文传递
导出
摘要 设H和K是复无穷维可分Hilbert空间,A∈B(H),B∈B(K),C∈B(K,H)且M_C=(ACOB).本文给出了上三角算子矩阵M_C的Weyl谱、本性谱、谱、左谱、右谱、下半本性谱、下半Weyl谱和上半Weyl谱的Fredholm扰动的完全刻画. Let H and K be complex infinite dimensional separable Hilbert spaces, A ∈ B(H), B ∈B(K), C ∈ B(K, H) and Mc = (A C O B). In this paper, we characterize completely the Fredholm perturbation for the Weyl spectrum, essential spectrum, spectrum, left spectrum, right spectrum, lower semi-Fredholm spectrum, lower semi-Weyl spectrum and upper semi-Weyl spectrum of the upper triangular operator matrices Mc.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2011年第4期581-590,共10页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(10771034 10771191 10471124) 福建省自然科学基金(Z0511019 S0650009)
关键词 BANACH空间 上三角算子矩阵 扰动 Banach spaces upper-triangular operator matrices spectra perturbation
  • 相关文献

参考文献1

二级参考文献9

  • 1Du, H. K., Pan, J.: Perturbation of spectrums of 2 × 2 operator matrices. Proc. Amer. Math. Soc., 121,761-766 (1994).
  • 2Han, J. K., Lee, H. Y., Lee, W. Y.: Invertible completions of 2 × 2 upper triangular operator matrices.Proc. Amer. Math. Soc., 128, 119-123 (2000).
  • 3Han, Y. M., Djordjevi6, S. VI: a-Weyl's theorem for operator matrices. Proc. Amer. Math, Soc., 130,715-722 (2001).
  • 4Lee, W. Y.: Weyl spectra of operator matrices. Proc, Amer. Math. Soc., 129, 131-138 (2000).
  • 5Lee, W. Y.: Weyl's theorem for operator matrices. Intege. Equ. Oper. Theory, 32, 319-331 (1998).
  • 6Weyl, H.: Uber beschrankte quadratische Formen, deren Differenz vollstetig ist. Rend. Circ. Mat. Palermo,27, 373-392 (1909).
  • 7Djordjevic, SI V.,Djordjevic, D. S.: Weyl's theorems: continuity of the spectrum and quasihyponormal operators. Acta Sci. Math. (Szeged), 64, 259-269 (1998).
  • 8Rakocevic, V.: Operators obeying a-Weyl's theorem. Rev. Roumaine Math. Pures Appl., 34(10), 915-919(1989).
  • 9Taylor, A. E.: Theorems on ascent, descent, nullity and defect of linear operators. Math. Ann., 168, 18-49(1966).

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部