期刊文献+

恰有两个子群共轭类长的有限群 被引量:1

Finite Groups with Exactly Two Conjugacy Class Sizes of Subgroups
原文传递
导出
摘要 设G是有限群,Ns(G)表示G的子群共轭类长构成的集合.本文研究Ns(G)中只有两个元素时有限群G的结构,在非幂零情形时给出了G的完全分类,在幂零情形时获得了G的一些性质. Let G be a finite group and Ns(G) denote the set of conjugacy class sizes of all subgroups of G. The aim of this paper is to investigate the finite groups G with Ns(G) exactly having two elements. We classfy the groups for the nonuilpotent case, and also obtain some properties for the nilpotent case.
作者 唐锋
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2011年第4期619-622,共4页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10871032)
关键词 有限群 子群共轭类长 DEDEKIND群 finite group conjugacy class size of subgroup Dedekind group
  • 相关文献

参考文献13

  • 1Ito N., On finite groups with given conjugate types I, Nagoya Math., 1953, 6:17- 28.
  • 2Liu X., Wang Y., Wei H., Notes on the length of conjugacy classes of finite groups, J. Pure and Applied Algebra, 2005, 196:111 -117.
  • 3Zhang J., Sylow numbers of finite groups, J. Algebra, 1995, 176:111 -123.
  • 4Guo W., Finite groups with given normalizers of Sylow subgroups II, Aeta Mathematiea Siniea, Chinese Series, 1996, 39(4): 509-513.
  • 5Zhou X., On the orders of conjugacy classes of cyclic subgroups, Arch. Math., 1995, 65: 210-215.
  • 6Liu Y., Zhu Y., Finite n-normalizer groups, Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(1): 6 -10.
  • 7Huppert B., Endlich Gruppen I, Berlin: Springer-Verlag, 1979.
  • 8Berkovich Y., Janko Z., Groups of Prime Power Order (Vol. 2), Berlin: Walter de Gruyter, 2008.
  • 9Perez-Ramos M., Groups with two normalizers, Arch. Math., 1988, 50: 199-203.
  • 10Xu M., Huang J., Li H., Li S., Introduction to Finite Groups (II), Beijing: Science Press, 2001.

同被引文献10

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部