期刊文献+

运动目标检测中的环境感知与自适应研究 被引量:2

Environmental perception and adaptive research in moving object detection
下载PDF
导出
摘要 在复杂环境下,任何环境的改变都会对运动目标检测的准确性产生影响。因此提出广义高斯混合模型与背景减除法相结合的算法对运动目标进行检测。该模型可以灵活地感知环境,自适应地处理视频背景模型中背景的环境变化,如光线渐变、背景扰动、阴影和噪声等,而且当光线突变时可以迅速感知并重新建模。此外为了满足实时性,采取每隔3帧进行一次背景更新的策略。实验结果证明本算法在满足实时性的同时,能准确检测出运动目标。 In complicated environment,any changes will influence the accuracy of the object detection.Therefore,an algorithm was put forward,which combined the Generalized Gaussian Mixture Model(GGMM) and background subtraction to detect moving objects.The model has a flexibility to perceive environment and model the video background adaptively in the presence of environmental changes(such as radial gradient,background disturbance,shadows and noise).And when it has sudden illumination change,the model can resolve it quickly.In order to meet the real-time requirement,this algorithm adopted the principle,to update every other two frames.The experiments show that it can meet the real-time requirement and detect the moving object accurately.
出处 《计算机应用》 CSCD 北大核心 2011年第7期1827-1830,共4页 journal of Computer Applications
基金 天津市科技支撑计划项目(10ZCKFGX00700)
关键词 广义高斯混合模型 背景减除 光线突变 阴影消除 Generalized Gaussian Mixture Model(GGMM) background subtraction sudden illumination change shadow limination
  • 相关文献

参考文献2

二级参考文献21

  • 1刘洁,张东来.关于自适应高斯混合背景模型的更新算法的研究[J].微计算机信息,2006(08S):241-242. 被引量:23
  • 2CUCCHIARA R, PICCARDI M, PRATI A. Detecting moving objects, ghosts, and shadows in video streams[ EB/OL]. [ 2009 - 05 - 15]. http://www, cs. utsa. edu/-qitian/seminar/Fall04/video/ 01233909. pdf.
  • 3LOB P L, VELASTIN S A. Automatic congestion detection system for underground platforms[ C]// Proceedings of 2001 International Symposium on Intelligent Multimedia Video and Speech Processing. New York: IEEE, 2001:158 - 161.
  • 4RIDDER C, MUNKELT O, KIRCHNER H. Adaptive background estimation and foreground detection using Kalman-fihering [ EB/ OL]. http://serdis, dis. ulpgc. es/-ii-vpc/MatDocerr/notas_practicas/TC_2/ICRAM-95-Ridder-etal_ps.
  • 5WREN C R, AZARBAYEJANI A, DARRELL A, et al. Pfinder: Real-time tracking of the human body [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 780 -785.
  • 6STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time tracking[ EB/OL]. [ 2009 - 04 - 05] http:// www. ai. mit. edu/projects/vsam/Publications/stauffer_ cvpr98 _ track, pdf.
  • 7KAEWTRAKULPONG P , BOWDEN R . An improved adaptive background mixture model for real-time tracking with shadow detection[ EB/OL]. [ 2009 - 05 - 10]. http://personal, ee. surrey, ac. uk/Personal/R. Bowden/publications/avbs01/avbs01. pdf.
  • 8Lipton A J, Fujiyoshi H, Patil R S. Moving target classification and tracking from real-time video [ A ]. In: Proceedings of IEEE Workshop on Applications of Computer Vision [ C ] , Princeton, NJ, USA, 1998:8-14.
  • 9Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking [ A ]. In: Proceedings of Computer Vision and Pattern Recognition[C], Fort Collins, Colorado, USA, 1999, 2: 246-252.
  • 10Piccardi M. Background subtraction techniques: a review [ A ]. In: Proceedings of IEEE Conference on Systems Man and Cybernetics [ C] , Hague, Netherlands, 2004, 4:3099-3104.

共引文献48

同被引文献33

  • 1Piccardi M. Background subtraction techmques:a re- view[C] // 2004 IEEE International Conference on Systems, Man and Cybernetics. Sydney: IEEE, 2004: 3099-3104.
  • 2Benezeth Y, Jodoin P M, Emile B, et al. Review and evaluation of commonlydmplemented background subtraction algorithms[C]//19th International Con- ference on Pattern Recognition. Tampa: IEEE, 2008 : 1-4.
  • 3SanMiguel J C, Maritinez J M. On the evaluation of background subtraction algorithms without ground- truth[C] // 2010 Seventh IEEE International Confer- ence on Advanced Video and Signal Based Surveil- lance. Boston: IEEE, 2010: 180-187.
  • 4Brutzer S, Hderlin B, Heidemann G. Evaluation ot background subtraction techniques for video surveii- lance[C] // 2011 IEEE Conference on Computer Vi- sion and Pattern Recognition. Providence: IEEE, 2011 : 1937-1944.
  • 5Lo B P L, Velastin S A. Automatic congestion detec- tion system for underground platform[C]//Proc 2001 ISIMP. Hong Kong; IEEE, 2001: 158-161.
  • 6Ismail H, Davide H, Larry S D. W4: real-time sur veillance of people and their activities [J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2000, 22(8): 809-830.
  • 7Oliver N M, Rosario B, Pentland A P. A Bayesian computer vision system for modeling human interae tions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 831-843.
  • 8Wren C, Azarbayejani A, Darrell T, et al. Real-time tracking of the human body[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 780-785.
  • 9Kaew T P, Bowden R. An improved adaptive back-ground mixture model for real-time tracking with shadow detection[C]//Proc of 2nd European Work- shop on Advanced Video Based Surveillance System: Computer Vision and Distributed Processing. Springer: IEEE, 2001: 1-5.
  • 10Elgammal A, Harwood D, Davis L. Non-parametric model for background subtraction[C]//6th Europe- an Conference on Computer Vision. Ireland: Spring- er, 2000: 751-767.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部