摘要
本文对两组喂不同料的51 只雏鸽用Body,Logistic 和Gompertz 方程拟合雏鸽生长曲线,分别采用试位法(DUD) 、高斯- 牛顿法(GaussNewton) 和麦夸特法(Marquardt) 对方程进行迭代求解各参数,结果表明,两组雏鸽的Logistic 和Marquardt 方程能很好地拟合雏鸽生长曲线,拟合度R2 均在0-97 以上,Body 方程拟合较差,Gompertz 曲线拐点比Logistic 曲线拐点要早,Gompertz 曲线极限体重参数A 大于Logistic 曲线,亲鸽饲喂全价颗粒料的雏鸽生长曲线拐点时间比亲鸽饲喂原粒料的雏鸽早1-2 d ,前者生长速率比后者大,两者雏鸽极限体重分别为597-5 g 和535-5 g 。
The results showed that the equation of Logistic and Marquardt could fit the squab′s growth curves exactly,the goodness of fit was greater than 0.97.the equation of body could not fit the curves exactly.The time of the inflection point of squab growth curves whose parents fed complete all pelleted ration was 1.2 days earlier than squab whose parents fed native feed.The lowest growth rat(k) in former curves was greater than the latter.The highest asymptotic final weight(A) of two kinds of curves was 597.6 and 535.5 g, respectively.
出处
《经济动物学报》
CAS
1999年第4期45-48,共4页
Journal of Economic Animal
关键词
雏鸽
生长曲线
方程
Young pigeon
Growth curves
Equation