期刊文献+

火电机组多变量预测控制系统的开发与应用 被引量:2

Study and Application of Multivariable Predictive Control System for Power Unit
下载PDF
导出
摘要 针对目前我国火电机组对于先进控制软件的迫切需求,结合子空间模型辨识和预测控制技术开发出一种基于状态空间模型的火电机组多变量预测控制系统;该系统采用子空间辨识方法离线辨识状态空间模型,利用多模型切换适应火电机组部分控制回路的非线性特征,最后使用预测控制器完成对象的在线控制;在电厂协调控制回路的实际应用中,负荷升降速率4%,压力偏差小于0.18MPa。所以该系统能够有效提高控制回路的响应速度和稳定性,具有一定的实用性和推广价值。 Aiming at the urgent demand for advanced control software in the power plants, this paper developed a new type of multivari- able predictive control system based on state--space model with subspace identification and predictive control technology. The system identi- fied state--space model with subspace identification off--line, conquered the non--line character of object with multi model switching, and controlled device on--line with predictive controller. In the application of power plant, the respond speed reached 4 % and pressure deviation less than 0. 18MPa. So this system can improve stability of control loop effectively. The technology and methods adopted in the system are practical and worthy of using abroad.
出处 《计算机测量与控制》 CSCD 北大核心 2011年第6期1345-1347,共3页 Computer Measurement &Control
关键词 火电机组 子空间辨识 预测控制 多模型切换 power unit subspace identification predictive control multi-- model switching
  • 相关文献

参考文献14

  • 1Hua Z G, Hua H, Lu J H, et al. Research and application of a new predictive control based on state feedback theory in power plant control system [A]. Evolutionary Computation, IEEE Congress on 2007 [C]. 4378-4385.
  • 2Liu X, Guan P, Chan C W. Nonlinear Multivariable Power Plant Coordinate Control by Constrained Predictive Scheme [J].Control Systems Technology, 2009: 1- 10.
  • 3Maciejowski J M. Predictive Control with Constraints[M]. Prentice Hall, 2002:2-10.
  • 4Van Overschee P, De Moor B. Subspace identification for linear systems: theory, implementation, applications [M]. Dordreeht, The Netherlands= Kluwer Academic Publishers, 1996:128-149.
  • 5Katayama T. Subspace methods for system identification [M]. London: Springer, 2005:42- 68.
  • 6Liu K, Deng L. Identification of pseudo--natural frequencies of an axially moving cantilever beam using a subspace-- based algorithm [C]. Mechanical Systems and Signal Processing, 2006, 94- 113.
  • 7Qin S J. An overview of subspaee identification [J]. Computers and Chemical Engineering, 2006, 1502 - 1513.
  • 8Pongpairoj H, Pourboghrat F. Real--time optimal control of flexible structures using subspace techniques [J]. IEEE Transactions on Control Systems Technology, 2006, 1021 - 1033.
  • 9Liu G Q, Sun Y X, Wang W H. Multi Model Predictive Control of Uncertain Linear System [A]. Proc. 14th Triennial world congress of IFAC [C]. Beijing China. 1999:189 - 194.
  • 10Chow C M, Kuznetsov A G, Clarke D. Successive one--Step--A- head Predictions in Multiple Model Predictive Control [J]. International Journal of Systems Science, 1998, 29:971 -979.

二级参考文献3

同被引文献19

  • 1李幼凤,苏宏业,褚健.子空间模型辨识方法综述[J].化工学报,2006,57(3):473-479. 被引量:46
  • 2杨剑锋,钱积新,赵均.变增益的非线性预测控制算法[J].化工自动化及仪表,2006,33(6):27-30. 被引量:3
  • 3丁宝苍,邹涛.约束时变不确定离散系统的输出反馈预测控制综合[J].自动化学报,2007,33(1):78-83. 被引量:16
  • 4Qin S J, Badgwell T A. An overview of nonlinear model predictive eontrol applications [J]. AIChE Journal, 2000, 43 (5): 1204 - 1226.
  • 5Muske K R, Badgwell T A. Disturbance modeling for offset--free linear model predictive control [J]. Journal of Process Control, 2002, 12 (5): 617-632.
  • 6Moonen M, Moor B D, etc. On-- and off--line identification of lin ear state- space models [J]. International Journal of Control, 1989, 49 (1): 219-232.
  • 7Fukushima H, Kim T H, Sugie T. Adaptive model predictive con- trol for a class of constrained linear systems based on the comparison model [J]. Automatiea, 2007, 43 (2) 301-308.
  • 8Sanchez J M, Rodellar J. Adaptive Predictive Control: Industrial Plant Optimization [M]. USA: Prentice Hall PTR, 1996:1 -12.
  • 9Kadali R, Huang B, Rossiter A. A data driven subspace approach to predictive controller design [J]. Control Engineering Practice, 2003, 11 (3): 261-278.
  • 10Cao Y, Yang Z J. Muiltobjective process controllability analysis [J]. Computers and Chemical Engineering, 2004, 28 (1 - 2) : 83 -90.

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部