期刊文献+

Hamilton半群的自同态半群

The Endomorphism Simegroup of Hamilton Semigroup
原文传递
导出
摘要 Hamilton半群是一种重要的代数结构。针对Hamilton半群的特点,利用其半群性质和图论结果对其自同态的结构进行了研究。首先定义了其自同态的一种乘法运算,并证明了Hamilton半群的自同态也构成一个Hamilton半群。其次,在引入半序关系之后,给出了Hamilton半群的自同态半群的一个图论表示,即关于半序关系的覆盖图是有向森林。 As a well-known semigroup, Hamilton semigroup acts on continuous functions in an algebra system. According to the characteristics of Hamilton semigroup, some basic properties of the semigroup and graph theoretical representation are used to investigate the structure of endomorphism to Hamilton semigreup. First of all, a new multiplication, which can solve the problem with computing endomorphism for Hamilton semigroup, is defined and then the main result that the endomorphism of Hamilton semigroup is also a Hamilton semigroup is given. Moreover, by adopting the partial order to the endomorphism of Hamilton semigroup, an expression of graph theory is established and that the Hasse graph for endomorphism semigroup is an oriented forest is proved.
作者 张化生
出处 《科技导报》 CAS CSCD 北大核心 2011年第18期62-64,共3页 Science & Technology Review
基金 国家青年科学基金项目(11001115)
关键词 Hamilton半群 自同态 Hasse图 有向森林 Hamilton semigroup endomorphism Hasse graph oriented forest
  • 相关文献

参考文献5

  • 1Norton D A. Hamiltonian loops[J]. Proc Amer Math Soc, 1952, 3(1): 56-65.
  • 2Howie J M. Fundamentals of semigroup theory [M]. Oxford: Oxford University Press, 1995.
  • 3Mitsch H, Petrich M. Basic properties of e-inversive semigroups[J]. Communicationsin in Algebra, 2000, 28(11): 5169-5182.
  • 4刘绍学.每一子代数都是理想的代数.数学学报,1964,:532-537.
  • 5李师正.Hamilton半群的结构[J].纯粹数学与应用数学,1993,9(1):105-111. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部