期刊文献+

基于二次加权Mean-Shift的目标实时跟踪

Real-time object tracking based on Mean-Shift with dual-weight
下载PDF
导出
摘要 针对经典Mean-Shift跟踪算法需要多次迭代才能达到收敛的缺点,提出一种高效的Mean-Shift跟踪算法。在使用颜色空间作为目标特征的跟踪系统中,目标本身往往可以表征为区别于背景的颜色特征,而颜色特征的分布则与偏移向量的权值相对应。通过分析跟踪算法中不同的权值对收敛速度的影响,对加权系数进行了二次加权,使改进的算法只需要一次粗定位和一次精确定位2次迭代便可准确地对目标进行定位。试验结果表明,该算法在保证了经典算法准确性的同时,大大加快了向目标收敛的速度。 An improved Mean-Shift trailing algorithm is proposed to resolve the short-coming of classical Mean-Shift trailing algorithm which needs multi-iterations to converge.In the object tracking systems,the color space is often adopted as the feature space,and the objects usually have unique colors so as to distinguish it selves from the background.In Mean-Shift algorithm the color feature's distributions are associated with the weights of the Mean-Shift vector.Through analyzing influences of different weights may have on the converge speeds,we reweight the weight coefficients,and permit the algorithm to accurately locate the target only through two iterations: a coarse one and a fine one.Experimental results demonstrate that the presented method is more efficient than the classical Mean-Shift algorithm,while it accelerates the speed of target convergence.
出处 《电子设计工程》 2011年第10期9-13,共5页 Electronic Design Engineering
基金 安徽省自然科学基金资助项目(10040606Q56) 安徽省高校省级自然科学研究项目资助项目(KJ2010B185) 淮北市科技计划资助项目(2010211)
关键词 目标跟踪 MEAN-SHIFT 核密度估计 Bhattac haryya系数 object tracking Mean-Shift kernel density estimation Bhattacharyya coefficient
  • 相关文献

参考文献8

  • 1Fukunaga K,Hostetler L D.The estimation of the gradient of a density function,with applications in pattern recognition[J].IEEE Transaction on Information Theory,1975,21 (1):32-40.
  • 2Cheng Y.Mean shift,mode seeking,and clustering[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,1995,17(8):790-799.
  • 3Comaniciu D,Ramesh V,Meer P.Kernel-based object tracking[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2003,25(5):564-577.
  • 4Comaniciu D,Meer P.Mean shift:A robust approach toward feature space analysis[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
  • 5Collins R.Mean-shift blob tracking through scale space[C] // In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'03),2003:234-240.
  • 6Bradski G R.Computer vision face tracking as a component of a perceptual user interface[C] //In Proceedings of IEEE Workshop on Applications of Computer Vision,1998:214-219.
  • 7Elgammal A,Duraiswami R,Davis L.Probabilistic tracking in joint feature-spatial spaces[C] //In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'03),2003:781-788.
  • 8YANG Chang-jiang,Duraiswami R,Davis L.Efficient Mean-Shift tracking via a new similarity measure[C] //In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05),2005:176-183.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部