期刊文献+

软件可靠性多模型综合预测研究综述

Overview on study of multi-model synthesis prediction of software reliability
下载PDF
导出
摘要 针对软件可靠性工程中单个经典模型局限性的问题,Lyu等人提出了"综合"的思想,即将多个经典模型的优势结合起来。对软件可靠性多模型综合预测方法进行了梳理,分析了现有综合预测方法的优势和不足之处,在此基础上提出了软件可靠性多模型综合预测研究框架:经典模型的选择、单个经典模型权重的确定、多模型综合、综合模型的评价。并对进一步的研究方向给出了作者的看法:非线性综合以及经典模型的选择准则有待进一步深入系统的研究。 For limitations of the classical model in software reliability project,Lyu et al proposed a "combination" thinking that combines the advantages of classical models.Multi-model for software reliability prediction methods were combed and analyzed,advantages and disadvantages of every synthetic model that was proposed in existing literature were pointed out.Based on this,research framework of multi-model for software reliability prediction was proposed,that consisted of four stages: the choice of the classical model,the weights of classical models,multi-model synthesis,evaluation of integrated model.The author's view of further research was given: nonlinear synthesis and selection criteria of classical model is next research focus.
出处 《电子设计工程》 2011年第10期180-182,共3页 Electronic Design Engineering
关键词 软件可靠性 多模型 综合 研究框架 software reliability multi-model combination research framework
  • 相关文献

参考文献18

  • 1Karunanithi N,Whitley D,Malaiya Y K.Prediction of software reliability using connectionist models[J].IEEE Transactions on Software Engineering,1992,18(7):563-574.
  • 2Khoshgoftaar T M,Szabo R M.Using neural networks to predict software faults during testing[J].IEEE Trasactions on Reliability,1996,45(3):456-462.
  • 3Sherer S A.Software fault prediction[J].Journal of System and Software,1995,29(2):97-105.
  • 4Sitte R.Compareson of software-reliability-growth predictions:neural networks vs parametric-recalibration[J].IEEE Trasactions on Reliability,1999,48(3):285-291.
  • 5Cai K Y,CAI Lin,WANG Wei-dong,et al.On the neural network approach in software reliability modeling[J].TheJournal of Systems and Software,2001,58(1):47-62.
  • 6Phame H.Reliability handbook[S].NewYork:Springer Verlag,2002.
  • 7Lyu M R,Nikora A.Applying reliability models more effectively[J].IEEE Software,1992,9(4):43-52.
  • 8吴勤,侯朝桢,原菊梅.软件可靠性多模型综合的预测方法[J].计算机工程,2006,32(23):214-215. 被引量:4
  • 9张雪松,郭平.基于组合神经网络的软件可靠性预测研究[J].北京师范大学学报(自然科学版),2005,41(6):599-603. 被引量:5
  • 10SU Yu-shen,HUANG Chin-yu,CHEN Yi-shin,et al.An artificial neural-network-based approach to software reliability assessment[J].Tencon 2005 IEEE,2005(10):1-6.

二级参考文献55

  • 1刘俊峰,赵尔宁,于陆.可靠性工程原理在电子系统中的应用[J].微计算机信息,2005,21(4):212-213. 被引量:11
  • 2管建池,肇莹,刘红星.优化神经元激活函数类型的重要性[J].济南大学学报(自然科学版),2005,19(3):282-282. 被引量:2
  • 3吴佑寿.利用输入信号先验知识构造某些分类神经网络的研究[J].中国科学(E辑),1996,26(2):140-144. 被引量:5
  • 4张文修,徐宗本,梁怡,梁广锡.包含度理论[J].模糊系统与数学,1996,10(4):1-9. 被引量:49
  • 5D Musa John.Software reliability engineering[M].Beijing,China Machine Press,2003.259-261.
  • 6Michael R Lyu,A Nikora.Applying reliability models more effectively[J].IEEE Software,1992.45-52.
  • 7N Karunanithi and Y K Malaiya.The Scaling Problem in Neural Network for Software Reliability Prediction[C].Proceedings of the Third International Symposium on Software Reliability Engineering,IEEE Computer Society Press,October 1992.76-82.
  • 8M Lu,S Brocklehurst and B Littlewood.Combinations of Predictions Obtained from Different Software Reliability Growth Models[C].Proceedings 10th Annual Software Reliability Symposium,1992.24-33.
  • 9Guo Ping,M R Lyu.A pseudoinverse learning algorithm for feedforward neural networks with stacked generalization applications to software reliability growth data[J].Neuro computing,56,2004.101-121.
  • 10Su Yu-Shen,Huang Chin-Yu,Yi-Shin Chen.An Artificial Neural-Network-Based Approach to Software Reliability Assessment[J].TENCON 2005 IEEE Region 10,Nov,2005.1-6.

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部