期刊文献+

一道高考作图题的剖析

下载PDF
导出
摘要 2010年上海秋季高考数学试卷的最后一题如下:已知椭圆Γ的方程为(x^2)/(a^2)+(y^2)/(b^2)=1(a〉b〉0),点P的坐标为(-a,b).(1)若直角坐标平面上的点M、A(0,-b)、B(a,0)满足(?)=(?),求点M的坐标;(2)设直线l_1:y=k_1x+p交椭圆Γ于C、D两点,交直线l_2:y=k_2x于点E.若k_1·k_2=-(b^2)/(a^2),证明:E为CD的中点;(3)对于椭圆Γ上的点Q(acosθ,bsinθ)(0〈θ〈丌),如果椭圆Γ上存在不同的两点P_1、P_2使得(?),写出求作点P_1、P_2的步骤,并求出使P_1、P_2存在的θ的取值范围.
作者 寇恒清
出处 《数学教学》 2011年第4期43-45,共3页
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部