期刊文献+

基于矢量基学习的自适应迭代最小二乘支持向量机回归算法 被引量:2

Adaptive Iterative LS-SVM Regression Algorithm Based on Vector Base Learning
下载PDF
导出
摘要 为增强最小二乘支持向量机(LS-SVM)回归建模的稀疏性、鲁棒性和实时性,在加权LS-SVM的基础上,提出了基于矢量基学习的自适应迭代回归算法。在训练过程中,该算法通过矢量基学习和自适应迭代相结合的方法得到1个小的支持向量集,同时采用加权方法确定权值以减小训练样本中非高斯噪声的影响。回归学习和动态系统辩识的仿真结果表明:在回归建模精度相似的情况下,该算法确定的支持向量为全部学习样本的4.9%~8.9%,训练时间为标准LS-SVM的0.011%~0.383%;由于能够鲁棒跟踪时变非线性系统的动态特性,适合在线实时训练;可进一步用于非线性系统的建模和实时控制研究。 To enhance the sparseness,robustness and real-time performance for regression modeling of least square support vector machine(LS-SVM),an adaptive iterative regression algorithm based on the vector base learning and weighted LS-SVM is proposed.In the algorithm ' s training process,the vector base learning and adaptive iterative procedures are combined,and a small support vector set can be obtained.The weights are determined by a weighted method in order to reduce the effect of the non-Gaussian noise in training samples.Simulation results of regression learning and dynamic system identification show that under the condition of similar regression modeling accuracy,the support vectors that the proposed algorithm determines are 4.9%~8.9% of the whole training samples,and the running time is 0.011%~0.383% of the standard LS-SVM.The algorithm is suitable for on-line real-time training because it can robustly track the dynamic characteristics of nonlinear time-varying systems and can be applied in nonlinear systems modeling and real-time control.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2011年第3期328-333,共6页 Journal of Nanjing University of Science and Technology
关键词 最小二乘支持向量机 矢量基 自适应迭代 回归算法 least square support vector machine vector base adaptive iterative regression algorithm
  • 相关文献

参考文献6

二级参考文献28

  • 1Vapnik V N. The nature of statistical learning theory [M]. New York: Springer-Verlag. 1995.
  • 2Zhang Q,Benveniste A. Wavelet networks [J]. IEEE Trans on Neural Networks,1992,3(6):889-898.
  • 3Suykens J A K,van Gestel T, De M B,et al. Least squares support vector machines [M]. Singapore: World Scientific, 2002.
  • 4Daubechies I. The wavelet transform,time-frequency localization and signal analysis [J]. IEEE Trans on Information Theory, 1990,36(5):961-1 005.
  • 5Mercer J. Functions of positive and negative type and their connection with the theory of integral equations [J]. Philosophical Transactions of the Royal Society of London:A,1909,(209):415-446.
  • 6Narendra K,Parthasarathy K. Identification and control of dynamical systems using neural networks [J]. IEEE Trans on Neural Networks, 1990,1(1):4-27.
  • 7Smola A J,Schlkopf B,Müller K R.The connection between regularization operators and support vector kernels [J]. Neural Networks,1998,11(4):637-649.
  • 8LINDA K.Solving the Quadratic Programming Problem Arising In Support Vector Classification [C] // SCHOLKOPF B,BURGES C J C,SMOLA A J (Eds).Advances in Kernel Methods-Support Vector Learning.Cambridge,MA:MIT Press,1998:147-167.
  • 9OSUNA E,FREUND R,GIROSI F.An Improved Training Algorithm for Support Vector Machines [C] // IEEE Workshop on Neural Networks and Signal Processing Ⅶ.Amelia Island:IEEE Press,1997:276-285.
  • 10JOACHIMS T.Making Large-Scale Support Vector Machine Learning Practical [C]// SCHOLKOPF B,BURGES C J C,SMOLA A J (Eds).Advances in Kernel Methods-Support Vector Learning.Cambridge,MA:MIT Press,1998:169-184.

共引文献62

同被引文献20

  • 1李红莲,王春花,袁保宗,朱占辉.针对大规模训练集的支持向量机的学习策略[J].计算机学报,2004,27(5):715-719. 被引量:53
  • 2Platt J C,Scholkopf B,Burges C J C,et al. Fast training of SVMs using sequential minimal optimization [ A ]. Advances in Kernel Methods Support Vector Learning [ C ]. Massachusetts, US: MIT Press, 1998 : 185-208.
  • 3Keerthi S, Shevade S, Bhattacharyya C, et al. Improvements to platt's SMO algorithm for SVM classifier design [ J ]. Neural Networks, 1999,6 ( 12 ) : 783 -789.
  • 4Zhang Ling, Zhang Bo. A geometrical representation of McCulloch-pitts neural model and its applications[ J]. IEEE Transactions on Neural Networks, 1999,10 (4) : 925 -929.
  • 5Zhang Li, Zhou Weida, Jiao Licheng. Pre-extracting support vectors for support vector machine[ A]. WCCC- ICSP Proceedings of 5th International Conference on Signal Processing [ C ]. Beijing: Publishing HouseElectronics Industry, 2000 : 1427-1431.
  • 6Canu S, Grandvalet Y, Guigue V, et al. SVM and kernel methods Matlab toolbox [ EB/OL]. http://asi, insa- rouen, frl N arakotom/toolbox/,2005-12-20.
  • 7Vittal S,Hajela P,Joshi A. Review of approaches to gas turbine life management[A].New York,USA:American Institute for Aeronautics &Astronautics,2004.1-11.
  • 8Wang W B. A model to predict the residual life of aircraft engines based upon oil analysis data[J].{H}NAVAL RESEARCH LOGISTICS,2005,(03):276-284.
  • 9Xu D,Zhao W B. Reliability prediction using multivariate degradation data[A].Virginia,USA:IEEE,2005.337-341.
  • 10Vapnik V N. The nature of statistical learning theory[M].New York,USA:Springer,1999.

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部