期刊文献+

金属TPS蜂窝盖板的热梯度诱导变形计算 被引量:2

Calculation of Deformation Induced by Thermal Gradient of Metallic TPS Honeycomb
下载PDF
导出
摘要 建立了蜂窝结构的一维传热模型,给出了其热梯度诱导变形计算公式。同时,计算了某高温合金六角蜂窝结构的热变形,认为在设计金属TPS的蜂窝盖板时,必须考虑其特定服役环境下的热变形。 One-dimensional heat transfer model and calculation formula of deformation induced by thermal gradient of honeycomb structure were introduced.Thermal deformation of high temperature alloy hex honeycomb structure was calculated.It was concluded that thermal deformation under service environment should be considered when design metallic TPS.
作者 秦强 蒋军亮
出处 《装备环境工程》 CAS 2011年第3期34-37,共4页 Equipment Environmental Engineering
关键词 金属热防护系统 蜂窝结构 热梯度 热变形 metallic thermal protection system honeycomb structure thermal gradient thermal deformation
  • 相关文献

参考文献8

  • 1杨亚政,李松年,杨嘉陵.高超音速飞行器及其关键技术简论[J].力学进展,2007,37(4):537-550. 被引量:43
  • 2MYERS David E, MARTIN Carl J, BLOSSER Max L.Parametric Weight Comparison of Advaneed Metallie, Ceramic Tile and Ceramic Blanket Thermal Protection Systems, NASA/TM-2000-210289[R]. 2000.
  • 3史丽萍,李垚,赫晓东.金属热防护系统的研究进展[J].宇航材料工艺,2005,35(3):21-23. 被引量:8
  • 4BLOSSER M L. Development of Metallic Thermal Protection Syslems for the Reusable Launch Vehicle, NASA Technical Memorandum 110296[R]. 1996 : 1-22.
  • 5Space Shuttle Program Phase B Studies NAS-8-26016[R].(余不详).
  • 6SWARM R T, PITTMAN C M. Analysis of Effective Thermal Conduc/Mtes of Honeycomb-Core and Corrugated-Core Sandwich Panels, NASA TN D-714[R]. 1961.
  • 7梁伟,张立春,吴大方,王战,麦汉超.金属蜂窝夹芯板瞬态热性能的计算与试验分析[J].航空学报,2009,30(4):672-677. 被引量:17
  • 8DARYABEIGI Kamran, BLOSSER Max L, WURSTEII Kathryn E. Displacements of Metallic Thermal Protection System Panels During Reentry, AIAA-2006-2948[R]. 2006.

二级参考文献68

  • 1李松年.航天结构热力力学的任务和应用[J].力学进展,1994,24(1):1-23. 被引量:12
  • 2白丹,范绪箕.航天器金属热防护结构非灰体隔热层传热计算[J].南京航空航天大学学报,2005,37(4):403-407. 被引量:8
  • 3解维华,张博明,杜善义.重复使用飞行器金属热防护系统的有限元分析与设计[J].航空学报,2006,27(4):650-656. 被引量:25
  • 4杨炳渊,史晓明,梁强.高超声速有翼导弹多场耦合动力学的研究和进展[C]//中国宇航学会结构强度与环境工程专业委员会年会论文集.2007:83-95.
  • 5Arulanantham M, Kaushika N D. Coupled radiative and conductive thermal transfer across transparent honeycomb insulation materials[J]. Applied Thermal Engineering, 1996, 16(3). 209-217.
  • 6Daryabeigi K. Thermal analysis and design of multilayer insulation for re entry aerodynamic heating[R]. AIAA 2001--2834, 2001.
  • 7中国航空材料手册编辑委员会.中国航空材料手册[M].2版.北京:中国标准出版社,2002.
  • 8Correll J T. Destiny in space. Air Force Magazine,1998;(2) :11 ~ 16.
  • 9Correll J T. The integration of aerospace. Air Force Magazine,1999 ; (2) :10 ~ 16.
  • 10France M E B. Antipodal zones:implications for the future of space surveillance and control. Airpower Journal X,1996 ; ( 1 ) :94 ~ 106.

共引文献65

同被引文献32

  • 1唐功跃,吴国庭,姜贵庆.缝隙流动分析及其热环境的工程计算[J].中国空间科学技术,1996,16(6):1-7. 被引量:11
  • 2徐超,张铎.高超声速飞行器热防护系统尺寸优化设计[J].中国空间科学技术,2007,27(1):65-69. 被引量:11
  • 3张鲁明.航天飞机空气动力学分析[M].北京:国防工业出版社,2009.
  • 4JOHNSON C B.Heat Transfer Date to Cavities Between Sim- ulated RSI Tiles at Mach 8, CR-128770[R]. NASA, 1973.
  • 5FOSTER T F, LOCKMAN W K, GRIFALL W J. Thermal Protection System Gap Heating Rates of the Rockwell Inter- national Flat Plate Heat Transfer Model (OH2A/OH2B) , CR-134077[R]. NASA, 1973.
  • 6THROCKMORTON D A. Heat Transfer to surface and Gaps of RSI Tile Arrays in Turbulent Flow at Mach 10.3, TM X-71945[R]. NASA, 1973.
  • 7CHRISTENSEN H E, KIPP H W. Date Correlation and Analysis of Arc Tunnel and Wind Tunnel Tests of RSI Joins and Gaps Volume I-Technical Report, CR-134345[R]. NASA, 1974.
  • 8DUNAVANT J C, THROCKMORTON D A. Aerodynamic Heat Transfer to RSI Tile Surfaces and Gap Intersections[J]. Spacecraft&Rockets, 1974, 11 (6) : 437--440.
  • 9THROCKMORTON D A. Pressure Gradient Effects on Heat Transfer to Reusable Surface Insulation Tile-Array Gaps, TND-7939[R]. NASA, 1975.
  • 10唐功跃.缝隙流动分析及其热环境的工程计算[J].中国空间科技术,1996,(6):1-7.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部