期刊文献+

辐射源识别系统中分类器设计及其应用 被引量:6

Design and Application of Classifier for Emitter Recognition
下载PDF
导出
摘要 针对辐射源识别系统中分类器设计分析的不足,本文从分类器的两大基本任务拒识和鉴别出发,研究辐射源识别系统中的分类器设计。首先详细分析了拒识和鉴别先后执行顺序对系统性能的影响;然后阐述了拒识分类器和鉴别分类器设计所需要考虑的要点;最后根据当前分类器和工程应用的状况,分析适合于辐射源识别系统的分类器。 Because of the deficiency in analysis of classifier for emitter recognition,the design in classifier is discussed based on the rejection and discrimination performances.Firstly,the order of rejection and discrimination is analyzed in detail.Secondly,the important factors,designing the rejection and discrimination classifiers,are presented.Finally,the robust classifiers for emitter recognition are introduced according to recent development of classifiers and engineering application.
出处 《电子信息对抗技术》 2011年第3期20-24,共5页 Electronic Information Warfare Technology
关键词 拒识分类器 鉴别分类器 辐射源识别 rejection classifier discrimination classifier emitter recognition
  • 相关文献

参考文献15

  • 1郑生华,徐大专,靳学明,章仁飞.基于时频分析的雷达侦察信号处理技术[J].重庆大学学报(自然科学版),2006,29(11):96-100. 被引量:10
  • 2赵拥军,黄洁.雷达信号细微特征时频分析法[J].现代雷达,2003,25(12):26-28. 被引量:13
  • 3DUDA R O,HART P E,STORK D G.Pattern Classification[M].Second Edition,New York:John Wiley & Sons,2001.
  • 4BISHOP C M.Pattern Recognition and Machine Learning[M].New York:Springer Verlag,2006.
  • 5TAX D M J.One-Class Classification:Concept-Learning in the Absence of Counter-Examples[D].Delft University of Technology,2001.
  • 6TAX D M J,DUIN R P W.Support Vector Data Description[J].Machine Learning,2004,54(1):45-66.
  • 7VAPNIK V.Statistical Learning Theory[M].New York:John Wiley & Sons,Inc.1998.
  • 8CHRISTOPHER J C,BURGES.A Tutorial on Support Vector Machines for Pattern Recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167.
  • 9CHEN P H,FAN R E,UN C J.A Study on SMO -Type Decomposition Methods for Support Vector Machines[J].IEEE Trans Neural Networks,2006,17(4):893-908.
  • 10TENENBAUM J B,SILVA V D E,LANGFORD J C.A Global Geometric Framework for Nonlinear Dimensionality Reduction[J].Science,2000,290(5500):2319-2323.

二级参考文献18

  • 1TENENBAUM J B,De SILVA E,LANGFORD J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5552):2319-2323.
  • 2ROWEIS S T,SAUL L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5550):2323-2326.
  • 3LU Ju-wei,PLATANIOTIS K N,VENETSANOPOULOS A N,et al.Ensemble-based discriminant learning with boosting for face recognition[J].IEEE Trans on Neural Networks,2006,17(1):166-178.
  • 4HE Xiao-fei,NIYOGI P.Locality preserving projections[M].Cambridge:MIT Press,2003.
  • 5FREUND Y,SCHAPIRE R E.A dicision-theoretic generalization of on-line learning and an application to boosting[J].Journal of Computer System and Sciences,1997,55(1):119-139.
  • 6AMORES J,SEBE N,RADEVA P.Boosting the distance estimation application to the K-nearest neighbor classifier[J].Pattern Recognition Letters,2006,27(3):201-209.
  • 7SKURICHINA M,DUIN R P W.Bagging,boosting and the random subspace method for linear classifiers[J].Pattern Analysis & Applications,2002,5(2):121-135.
  • 8CHANG Ya,HU Chang-bo,TURK M.Manifold of facial expression[C]//Proc of IEEE International Workshop on Analysis and Modeling of Faces and Gestures.2003:28-35.
  • 9LIANG Dong,YANG Jie,ZHENG Zhong-long,et al.A facial expression recognition system based on supervised locally linear embedding[J].Pattern Recognition Letters,2005,26(15):2374-2389.
  • 10HE Xiao-fei,YAN Shui-cheng,HU Yu-xiao,et al.Face recognition using laplacianfaces[J].IEEE Trans on Pattern Analysis and Machine Intellgence,2005,27(3):328-340.

共引文献21

同被引文献56

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部