摘要
针对调制信号分类特征选择问题,提出了自适应惯性权重模拟退火二进制离散粒子群算法。该算法将模拟退火算法嵌入到离散粒子群算法循环体中,利用模拟退火算法具有较强的局部搜索能力和避免陷入局部最优解的特点,解决了简单智能优化算法早熟收敛和局部搜索能力弱等问题。仿真结果表明,该算法能有效选取最优特征,性能优于简单离散粒子群算法和遗传算法。
Adaptive weight simulated annealing binary discrete particle swarm optimization algorithm is proposed for feature selection of digital signal modulation recognition,which embeds the simulated annealing algorithm in the circle of discrete particle swarm optimization algorithm and uses the feature that simulated annealing algorithm has the strong ability of local search and makes searching process to avoid sinking into the local optimal solution,to solve the problem of slow convergence speed and high time complexity.The simulation results show that this algorithm has a better performance in feature selection than simple discrete particle swarm optimization algorithm and genetic algorithm.
出处
《电子信息对抗技术》
2011年第3期25-28,32,共5页
Electronic Information Warfare Technology
关键词
分类特征选择
自适应惯性权重
模拟退火算法
离散粒子群算法
feature selection
adaptive weight
simulated annealing algorithm
discrete particle swarm optimization algorithm