摘要
目的:观察冠状动脉微动脉细胞静息膜电位(RP)的分布特性及形成机制。方法:离体豚鼠冠状动脉微动脉(直径小于100μm)上,应用细胞内微电极技术记录细胞RP。结果:①成功记录到112个细胞,细胞平均RP为(-65±4.2)mV,应用高斯函数拟合后细胞RP呈双峰状分布,两个峰值分别为-43和-74 mV,分别称为高和低RP。10mmol/L K+和3μmol/L乙酰胆碱(ACh)在高RP细胞上引起超极化反应,幅度分别为(-7.4±0.87)mV(n=13)和(-15±1.2)mV(n=16)。而在低RP细胞上引起去极化反应,反应幅度分别为(9.6±1.2)mV(n=23)和(8.7±0.69)mV(n=15)。②低RP细胞上内向整流K+通道(Kir)阻断剂Ba2+引起浓度依赖的去极化,EC50为120μmol/L。应用≥100μmol/L Ba2+后低RP细胞转变为高RP,高K+和ACh介导的反应形式也发生相应改变。结论:冠状动脉微动脉细胞RP呈双峰分布,高K+和ACh在不同RP水平反应形式不同,这种独特的RP分布通过激活或失活Kir介导。
Objective:To investigate the distribution and mechanism of coronary arteriole(CA) cell resting membrane potential(RP) in guinea pigs.Methods:Cell RP was recorded by intracellular microelectrode in isolated guinea pig coronary arteriole(diameter 100 μm).Results:①Experiments were carried out in 112 cells with a mean RP of(-65±4.2)mV,the distribution of coronary arteriole cell RP fitted by Gaussian function was bimodal,one peak was-43 mV termed high RP,the other was-74 mV termed low RP.10 mmol/L K+ and 3 μmol/L acetylcholine(ACh) induced hyperpolarization in high-RP cells with(7.4±0.87)mV(n=13) and(-15±1.24)mV(n=16) respectively,and induced depolarization in low-RP cells with(9.6±1.2)mV(n=23) and(8.7±0.69)mV(n=15) respectively.②The inward rectifier K+ channel(Kir) blocker Ba2+ caused concentration-dependent depolarization in low-RP cells with an EC50 of 120 μmol/L 100 μmol/L Ba2+or higher could shift low-RP cells to high-RP state,the response of these cells to high K+ and ACh became a hyperpolarization.Conclusion:The distribution of coronary vascular cell RP is bimodal,high K+ and ACh induce different responses in low and high RP cells.The two RP states are exchangeable mainly due to all-or-none conductance changes of Kir.
出处
《中国应用生理学杂志》
CAS
CSCD
北大核心
2011年第2期140-143,共4页
Chinese Journal of Applied Physiology
基金
国家自然科学基金资助项目(30900490,30960417,8100411)
兵团博士基金项目(2010JC16,2010GG34)
石河子大学高层次人才项目(RCZX200921),石河子大学自然科学与技术创新项目(ZRKX2009ZD03
ZRKK2009YB24)
关键词
冠状动脉
静息膜电位
内向整流K+通道
细胞内微电极记录
coronary arteriol
resting membrane potential
inward rectifir K+ channel
intracellular microelectrode recording