期刊文献+

基于相对形状上下文与概率松弛标记法的点模式匹配算法 被引量:3

Point Pattern Matching Algorithm Based On Relative Shape Context and Probabilistic Relaxation Labelling
下载PDF
导出
摘要 点模式匹配是计算机视觉和模式识别中重要而基础的问题。在立体视觉匹配、图像配准、目标识别与跟踪等方面都有广泛的应用,是目前各领域关注和研究的热点。该文提出了一种新的将不变特征与概率松弛标记法相结合的点模式匹配算法。该算法首先提出一种新的基于点集的不变特征一相对形状上下文,然后利用点集间相对形状上下文的统计检验匹配测度来定义概率松弛标记法中新的相容性系数,并以此为基础来构造鲁棒的支持函数。最后通过匹配概率矩阵的松弛迭代以及匹配约束条件来实现点模式匹配问题的求解。模拟仿真与真实数据实验验证了本文算法在点集间存在相似变换乃至透视变换情况下具备较高匹配正确率,而且对于噪声和出格点也具备较强的鲁棒性。 Point Pattern Matching(PPM)is an important and fundamental issue in computer vision and pattern recognition, which is widely used in stereovision,imaging registration,object recognition and tracking,etc.It is a research hot spot in such kind of fields.This paper presents a novel and robust point pattern matching algorithm in which the invariant feature and probabilistic relaxation Iabelling(PRL)are combined.A new point-set based invariant feature,Relative Shape Context(RSC),is proposed firstly.Using the test statistic of relative shape context descriptor's matching scores as the foundation of new compatibility coefficients which are used in probabilistic relaxation labelling,the robust support functions are constructed based on the obtained compatibility coefficients.Finally, the correct matching results are achieved by using the relaxed iterations of matching probabilities matrix and imposing the mapping constraints required by the bijective correspondence.Experiments on both synthetic point-sets and real world data show that the proposed algorithm not only has a higher rate of correct matching under similarity or even perspective transformation between point sets,but also is robust to noise and outliers at the same time.
出处 《信号处理》 CSCD 北大核心 2011年第5期664-671,共8页 Journal of Signal Processing
基金 国家自然科学基金(编号:40901216) 国防预研资助项目(编号:513220206)
关键词 点模式匹配 不变特征 相对形状上下文 概率松弛标记法 Point pattern matching Invariant feature Relative shape context Probabilistic relaxation labelling
  • 相关文献

参考文献25

  • 1Jackson B P,Goshtasby A A.Registering aerial video images using the projective constraint[J].IEEE Transactions on Image Processing,2010,19(3):795-804.
  • 2Xiong Z,Zhang Y.A novel interest-point-matching algorithm for high-resolution satellite images[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47 (12):4189-4200.
  • 3Jain A K,Jung-Eun L,Rong J,et al.Content-based image retrieval:An application to tattoo images[C].The 16th IEEE International Conference on Image Processing (ICIP),Cairo,Egypt,Nov 7-10,2009,2745-2748.
  • 4Jiang T T,Jurie F,Schmid C.Learning shape prior models for object matching[C] ,IEEE Conference on Computer Vision and Pattern Recognition,Miami,FL,USA,June 20-25,2009,848-855.
  • 5Li HS,Kim E,Huang X L,et al.Object matching with a locally affine-invariant constraint[C].The Twenty-Third IEEE Conference on Computer Vision and Pattern Recognition,San Francisco,California,USA,June 13-18,2010.
  • 6McKeon R T,Flynn P J.Three-dimensional facial imaging using a Static Light Screen (SIS) and a dynamic subject[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,59(4):774-783.
  • 7McAuley J J,Caetano T S,Barbosa M S.Graph rigidity,cyclic belief propagation,and point pattern matching[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(11):2047-2054.
  • 8Besl P J,Mckay N D.A method for registration of 3-D shapes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239-256.
  • 9Chui H,Rangarajan A.A new point matching algorithm for non-rigid registration[J].Computer Vision and Image Understanding,2003,89(2):114-141.
  • 10Keren D.A Probabilistic Method for Point Matching in the Presence of Noise and Degeneracy[J].Journal Math Imaging Vision,2009,33:338-346.

同被引文献27

  • 1方辉,杨明等.基于地面特征点匹配的无人驾驶车全局定位.2010,32(1):55-60.
  • 2Peter W. M. Tsang, Terry Y. F and W. C. Situ. En- hanced affine invariant matching of broken boundaries based on particle swarm optimization and the dynamic mi- grant principle. Applied soft Computing, 2010, 10 (2) : 432-438.
  • 3Peter W. M. Tsang, W. C. Situ. Affine invariant matc- hing of broken boundaries based on simple genetic algo- rithm and contour reconstruction. Pattern Recognition Let- ters 2010,9(31 ) :771-780.
  • 4Weidong Yan, Zheng Tian, etc. Point Pattern Matching with Locality Preserving Descriptors. 2009 Sixth Interna- tional Conference on Fuzzy Systems and Knowledge Dis- covery ,2009.8:256-259.
  • 5Shanli Xuan, Dong Liang, etc. Method with the center of graph for point pattern matching. 2009 9th International Conference on Electronic Measurement & Instruments, 2009. 1 (8) : 345-349.
  • 6Jian Zhao, Shilin Zhou, Jixiang Sun, Zhiyong Li. Point pattern matching using Relative Shape Context and relaxa- tion labeling. 2010 2nd International Conference on Ad- vanced Computer Control, 2010,2:516-520.
  • 7Carcassoni M, Hancock ER. Spectral correspondence for point pattern matching. Pattern Recognition 2003 ;36( 1 ) : 193-204.
  • 8Jinzhong Yang, James P. W., etc. A robust hybrid meth- od for norigid image registration. Pattern Recognition, 2011,4(44) : 764-776.
  • 9Leordeanu M, Hebert M,Sukthankar R. An integer projec- ted fixed point method for graph matching and MAP infer- ence[ C]//Neural Information Processing Systems,2009 : 1114 - 1122.
  • 10Scott G L, Longuet-higgins H. An algorithm for associating the features of two patterns[ C]. Proceedings of Biological Sciences, 1991:21 - 26.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部