期刊文献+

冲击噪声背景下基于归一化的线性约束特征干扰相消器 被引量:3

Normalized-LCEC Amid Heavy-Tailed Impulsive Noise of Unknown Statistics
下载PDF
导出
摘要 针对冲击噪声背景下,常规波束形成算法性能下降的问题,本文提出一种适用于任意未知统计特性的代数拖尾冲击噪声环境下的基于归一化的线性约束特征干扰相消器(N-LCEC)算法。该算法在附加线性约束的条件下,以噪声功率最小化为目标函数;通过对输入信号进行无穷范数归一化,使变换信号的二阶统计量在代数拖尾的冲击噪声环境下存在且有界,然后将自适应权矢量约束于噪声子空间的方法,提高了波束形成器在冲击噪声背景下的性能。N-LCEC算法无需噪声特征指数的先验信息,适用冲击噪声环境更广;N-LCEC算法具有运算简单,干扰抑制能力强,同时保持静态方向图的副瓣特征等优点。仿真结果验证了该算法的有效性和优越性。 To solve the performance degradation of beamformer amid heavy-tailed impulsive noises of unknown statistics,a new beamforming approach to combat the arbitrary unknown heavy-tailed impulsive noises of unknown statistics is presented.The new approach, termed as Normalized-Linearly Constrained Eigencanceler(N-LCEC)algorithm,is formulated as one to minimize the noise power of the beamformer's output subject to a pre-specified set of linear constraints.To improving the performance of the beamformer amid heavy-tailed impulsive noise of unknown statistics,the new algorithm put the weighting vector to the noise subspace after the input signal being infinity norm snapshot normalized which to keep the second-order-statistics of the input signal existing and finite.This new N-LCEC algorithm has these advantages:(1)simpler computationally with a closed-form solution,(2)needing no prior information nor estimation of the impulsive noise's effective characteristic exponent's numerical value,(3)applicable to a wider class of heavy-tailed impulsive noises of unknown statistics,and(4)offering better interference-rejection and low sidelobe.Simulation results demonstrate the validity and superiority of the proposed algorithm.
出处 《信号处理》 CSCD 北大核心 2011年第5期795-799,共5页 Journal of Signal Processing
基金 航空基金(2009ZC52038) 南京理工大学自主科研专项计划资助项目(2010ZYTS028) 南京理工大学科研启动基金资助(2010ZDJH05)
关键词 阵列信号处理 线性约束特征干扰相消器 分数低阶矩 冲击噪声 Array signal processing Linearly Constrained Eigencanceler Fractional Lower Order Moments Impulsive noise
  • 相关文献

参考文献9

二级参考文献68

  • 1赵军,是湘全,谷亚林,杨静宇.接收阵列天线的时-空二维谱估计[J].南京理工大学学报,2004,28(5):511-515. 被引量:2
  • 2何劲,刘中.脉冲噪声环境中鲁棒的自适应波束形成方法[J].电子学报,2006,34(3):464-468. 被引量:14
  • 3Krim H, Viberg M. Two decades of array signal processing research[J]. IEEE Signal Process Magazine, 1996, 13(4) : 67-94.
  • 4Sehmidt R O. Multiple emitter location and signal parameter eslimation[ J]. IEEE Trans on Antennas Propagation, 1986, 34(3): 276-280.
  • 5Roy R, Kailath T. ESPRIT-Estimation of signal parameters via rotational invariance techniques[J ]. IEEE Trans on Acoustics, Speech and Signal Processing, 1989, 37 (7) : 984 -995.
  • 6Field E C, Lewinstein M. Amplitude-probability distribution model for VLF/ELF atmospheric noise[ J ]. IEEE Trans on Communications, 1978, 26(1 ): 83-87.
  • 7Shinde M P, Gupta S N. Signal detection in the presence of atmospheric noise in tropic[ J]. IEEE Trans on Communications, 1974, 22 ( 8 ) : 1055 - 1063.
  • 8Bouvet M, Schwartz S C. Comparison of adaptive and robust receivers for signal detection in ambient underwater noise [ J ]. IEEE Trans on Acoustics, Speech and Signal Processing, 1989, 37(5) : 621 -626.
  • 9Shao M, Nikias C I,. Signal proeessing with fractional lower order moments : Stable processes and their applications [ J ]. Proceedings of the IEEE , 1993, 81 (7) : 986 - 1010.
  • 10Tsakalides P, Nikias C I,. Maximum likelihood localization of sources in noise modeled as a stable process [J]. IEEE Trans on Signal Processing, 1995, 43 (11) : 2700 -2713.

共引文献29

同被引文献27

  • 1余继周.一种改进的正交投影自适应波束形成算法[J].上海航天,2005,22(4):6-8. 被引量:1
  • 2丁前军,王永良,张永顺.基于变换的线性约束降秩自适应波束形成算法[J].系统工程与电子技术,2005,27(12):2010-2013. 被引量:2
  • 3何劲,刘中.脉冲噪声环境中鲁棒的自适应波束形成方法[J].电子学报,2006,34(3):464-468. 被引量:14
  • 4Kannan B, Fitzgerald W J. Beamforming in additive a-stable noise using fractional lower statistics (FLOS) [J]. IEEE International Conference on Electronics, Circuits and Systems, 1999, 3: 1755-1758.
  • 5Taskalides P, Nikias C L. Robust space-time adaptive processing (STAP) in non-Gaussian clutter environments[J]. IEEE Proceedings-Radar, Sonar, Navigation, 1999, 146(2): 84-93.
  • 6He J, Liu Z, Wong K T. Linearly constrained minimum- "Geometric Power" adaptive beamforming using logarithmic moments of data containing heavy-tailed noise of unknown statistics [J]. IEEE Antennas and Wireless Propagation Letters, 2007, 6: 600-603.
  • 7He J, Liu Z. Linearly constrained minimum-normalised variance beamforming against heavy-tailed impulsive noise of unknown statistics [J]. IET Radar, Sonar and Navigation, 2008, 2(6): 449--457.
  • 8A. Haimovich.The eigencanceler: adaptive radar by eigenanalysis methods. IEEE Transactions on Aerospace and Electronic Systems . 1996
  • 9HUANG Y J,WANG Y W,MENG F J,et al.A spatial spectrum estimation algorithm based on adaptive beamforming nulling. 2013Fourth International Conference on Intelligent Control and Information Processing (ICICIP) . 2013
  • 10Frost OL Ⅲ.An algorithm for linearly constrained adaptive array processing. Proceedings of Tricomm . 1972

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部