期刊文献+

H^3(-1)中常Gauss曲率曲面和无界主曲率曲面

Some Surfaces with Constant Gauss Curvature and Unbound Principal Curvatures in H^3(-1)
下载PDF
导出
摘要 构造了双曲空间中常Gauss曲率曲面,给出了一类从H2(c)(0<c<1)到H3(-1)的主曲率无界的等距浸入. Some surfaces with constant Gauss curvature are constructed in hyperbolic space, then an isometric immersion with unbound principal curvatures from H2(c)(0c1) into H3(-1) is obtained.
出处 《河南工程学院学报(自然科学版)》 2011年第2期76-80,共5页 Journal of Henan University of Engineering:Natural Science Edition
关键词 GAUSS曲率 主曲率 等距浸入 Gauss curvature principal curvature isometric immersion
  • 相关文献

参考文献9

  • 1Hartman P, Nirenberg L. On spherical image maps whose Jacobians do not change sign[J]. Amer Math, 1959(81 ) :901 - 920.
  • 2Massey W. Surfaces of Gaussian curvature zero in Euclidean 3 -space [ J ]. Tohoku Math, 1962 (14) :73 -79.
  • 3O' Neill B, Stiel E. Isometric immersions of constant curvature manifolds [ J ]. Michigan Math, 1963 (10) :335 -339.
  • 4Abe K. Applications of a Riccati type differential equation to Riemannian manifolds with totally geodesic distributions [ J ]. Tohoku Math, 1973(25) :425 -444.
  • 5Ferus D. Totally geodesic foliations[J]. Math Ann, 1970(188) :313 -316.
  • 6Nomizu K. Isometric immersions of the Hyperbolic plane into the Hyperbolic space[ J ]. Math Ann, 1973 (205) :181 -192.
  • 7Ferus D. On isometric immersions between Hyperbolic spaces [ J ]. Math Ann, 1973 (205) : 193 - 200.
  • 8Hu Z J, Zhao G S. Classification of Isometric immersions of the Hyperbolic space H2 into H3 [ J ]. Geometriae Dedicata, 1997 (65) :47 -57.
  • 9Hu Z J, Zhao G S. Isometric immersions from the Hyperbolic space H2 ( - 1 ) into H3 ( - 1 ) [ J ]. Proceedings of the American Mathematical Society, 1997 ( 125 ) :2693 - 2697.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部