摘要
构造了双曲空间中常Gauss曲率曲面,给出了一类从H2(c)(0<c<1)到H3(-1)的主曲率无界的等距浸入.
Some surfaces with constant Gauss curvature are constructed in hyperbolic space, then an isometric immersion with unbound principal curvatures from H2(c)(0c1) into H3(-1) is obtained.
出处
《河南工程学院学报(自然科学版)》
2011年第2期76-80,共5页
Journal of Henan University of Engineering:Natural Science Edition
关键词
GAUSS曲率
主曲率
等距浸入
Gauss curvature
principal curvature
isometric immersion