期刊文献+

基于牛顿插值的批量轴类零件加工误差补偿 被引量:13

Error Compensation for Shaft Parts in Batch Manufacture Based on Newton Interpolation
下载PDF
导出
摘要 为提高批量轴类零件加工精度及加工效率,通过分析批量轴类零件加工数据,得到加工误差分布规律;运用牛顿插值理论建立批量轴类零件加工误差数学模型;应用用户宏程序按工件序号及切削位置进行误差实时补偿。该误差补偿方法综合考虑切削力引起的误差、热误差、刀具磨损误差、机床几何误差、编程误差、检测调整误差等误差因素,全面分析各误差因素与误差分布规律的关系,避免了误差因素分析不全的影响。得出切削力是影响单件工件加工误差分布的主要因素,刀具磨损是影响批量轴类零件加工误差分布的主要因素,热误差是导致误差分布规律畸变的主要因素。实践表明,应用该误差补偿方法可使批量轴类零件最大加工误差由60μm降低到4μm,补偿了93.3%;减少在机检测调整时间,加工效率提高13%,有效提高批量轴类零件加工精度和加工效率。 To improve batch shaft parts machining accuracy and efficiency,machining error distribution law is obtained through analysis of the machining data of batch shaft parts.A mathematical model of machining error is built by using Newton interpolation.Macro program is used to realize real-time error compensation according to the serial number of work piece and the cutting position.To avoid incomplete analysis of error factors,they are comprehensively considered in this compensation method,including cutting force,thermal deformation,tool wear,programming,measurement and adjustment,and machine geometry.The relationship of error factors and error distribution law is analyzed.The results show that cutting force is the main factor affecting single shaft error distribution,tool wear is the main factor affecting batch shafts error distribution,and thermal error is the main factor causing distortion of error distribution law.Practice shows that the maximum machining error is reduced from 60 μm to 4 μm,a compensation of 93.3%,by using this error compensation method,while the machining efficiency is improved by 13% as a result of reducing the measurement and adjustment time.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2011年第9期112-116,共5页 Journal of Mechanical Engineering
基金 '高档数控机床与基础制造装备'国家科技重大专项资助项目(2009ZX04014-22)
关键词 轴类零件 批量加工 牛顿插值 宏程序 误差补偿 Shaft parts Batch machining Newton interpolation Macro program Error compensation
  • 相关文献

参考文献6

  • 1倪军.数控机床误差补偿研究的回顾及展望[J].中国机械工程,1997,8(1):29-33. 被引量:159
  • 2LIAN R J.A grey prediction fuzzy controller for constant cutting force in turning[J].International Journal of Machine Tools & Manufacture,2005 (45):1047-1056.
  • 3YANG Jianguo,YUAN Jingxia,NI Jun.Thermal error mode analysis and robust modeling for error compensation on a CNC turning center[J].International Journal of Machine Tools & Manufacture,1999(39):1367-1381.
  • 4杨建国,张宏韬,童恒超,曹洪涛,任永强.数控机床热误差实时补偿应用[J].上海交通大学学报,2005,39(9):1389-1392. 被引量:53
  • 5CREIGHTON E,HONEGGER A,TULSIAN A,et al.Analysis of thermal errors in a high-speed micro-milling spindle[J].International Journal of Machine Tools&Manufacture,2010(50):386-393.
  • 6沈金华,李永祥,鲁志政,陈志俊,杨建国.数控车床几何和热误差综合实时补偿方法应用[J].四川大学学报(工程科学版),2008,40(1):163-166. 被引量:16

二级参考文献17

  • 1Lin P D,Int J Mach Tools Manufact,1993年,33卷,5期,675页
  • 2Chen J S,Trans NAMRI,1992年,20卷,325页
  • 3Zhang G,Ann CIRP,1985年,34卷,1期,445页
  • 4Bryan J B. International status of thermal error research[J]. Annals of CIRP, 1990, 39 (2): 645-656.
  • 5Yang S, Yuan J X, Ni J. The improvement of thermal error modeling and compensation on machine tools by CMAC neural network[J]. Int J of Machine Tool &Manufacture, 1996, 36:527-537.
  • 6Aronson R B. War against thermal expansion [J ].Manufacturing Engineering, 1996, 116 (6): 45-50.
  • 7Attia M H , Fraser S. A generalized modeling methodology for optimized real-time compensation of thermal deformation of machine tools and CMM structures [J]. Int J of Machine Tools & Manufacture,1999, 39:1001-1010.
  • 8YangJG, RenYQ, DuZC. Robust modeling and real time compensation for the thermal error on a large number of CNC turning centers[J]. Key Engineering Materials, 2004, 259- 260: 756- 760.
  • 9Bryan J B.International status of thermal error research[C]//Annals of CIRP.1990,39 (2):645-656.
  • 10Jun Ni.CNC machine accuracy enhancement through real time error compensation,Journal of Manufacturing Science and Engineering,1997,119:717-725.

共引文献216

同被引文献146

引证文献13

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部