期刊文献+

Navier-Stokes方程两层稳定有限元算法分析

Analysis of Two-level Stabilized Finite Element Methods for Stationary Navier-Stokes Equations
下载PDF
导出
摘要 分析了定常Navier-Stokes方程的两种两层稳定有限元算法。它们将局部Gauss积分稳定化技术和两层算法的思想充分结合,采用低次等阶有限元P1-P1或Q1-Q1对N-S方程进行数值求解。误差分析和数值算例结果表明,当粗、细网格尺度H=O(h1/2)时,它们与在细网格上的单层有限元算法具有相同的收敛速度,而两层算法却节省了大量的计算时间。相比之下,Simple算法具有更高的计算效率。而且进一步发现Oseen算法能够对小粘性系数N-S方程进行有效求解。 In this paper,two kinds of two-level stabilized finite element methods based on local Gauss integral technique for the two-dimensional stationary Navier-Stokes equations approximated by the lowest equal-order P1-P1 or Q1-Q1 elements.The error analysis shows that the two-level stabilized finite element methods provide an approximate solution with the convergence rate of the same order as the usual stabilized finite element solution solving the Navier-Stokes equations on a fine mesh for a related choice of mesh widths H=O(h1/2).Therefore,the two-level methods are of practical importance in scientific computation.Finally,the performance of two kinds of two-level stabilized methods are compared in efficiency and precision aspects by a series of numerical experiments.The conclusion is that the simple two-level stabilized methods is best than the other in accuracy and efficiency.And,there is better numerical accuracy for the Oseen algorithm to N-S equations with low viscosity coefficient.
作者 杨建宏
出处 《航空计算技术》 2011年第3期27-30,共4页 Aeronautical Computing Technique
基金 国家自然科学基金项目资助(11071193) 宝鸡文理学院重点科研项目基金资助(ZK10113)
关键词 NAVIER-STOKES方程 稳定有限元算法 局部Gauss积分技术 两层算法 Navier-Stokes equations stabilized finite element method local Gauss integral two-level method
  • 相关文献

参考文献9

  • 1He Yinnian,Li Jian.A stabilized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equations[J].Appl Numer Math,2008,58 (10):1503-1514.
  • 2Bochev P B.Dohrmann C R,Gunzburger M D,et al.Stabilization of low-order mixed finite elements for the stokes equations[J].SIAM J Numer Anal,2006,44(1):82-101.
  • 3Temam R.Navier-Stokes equations,theory and numerical analysis[M].third ed.Amsterdam:North-Holland,1983.
  • 4Girault V,Raviart P A.Finite element method for NavierStokes equations:theory and algorithms[M].Berlin,Heidelberg:Springer-Verlag,1987.
  • 5He Yinnian,Wang Aiwen,Mei Liquan,et al.A stabilized finite element method for the stationary Navier-Stokes equations[J].Eng Math,2005,51(4):367-380.
  • 6Li Jian,He Yinnian.A stabilized finite element method based on two local Gauss integral technique for the stationary Stokes equations[J].J Comp Appl Math,2008,214(1):58-65.
  • 7Li Jian,He Yinnian,Chen Zhangxin,et al.A new stabilized finite element method for the transient Navier-Stokes equations[J].Comp Meth Appl Mech Eng,2007,197(4):22-35.
  • 8Li Jian.Investigations on two kinds of two-level stabilized finite element methods for the stationary Navier-Stokes equations[J].Appl Math Comput,2006,182(2):1470-1481.
  • 9He Yinnian,Li Kaitai.Two-level stabilized finite element methods for the steady Navier-Stokes problem[J].Computing,2005,74(4):337-351.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部