期刊文献+

一种降阶法求解投影连续时序Lyapunov方程

An Order-reduced Method for Solving Projected Continues-time Lyapunov Equation
下载PDF
导出
摘要 利用矩阵的实schur分解,提出了一种降阶法求解大规模投影连续时序Lyapunov方程.该方法先将矩阵进行块对角化,然后将大规模Lyapunov方程的求解转化为一系列低阶Lyapunov方程的求解,进而得到方程的解.在文章最后部分,给出了具体数值实例对该方法进行说明. Using matrix real schur decomposition in the paper,an order-reduced method is proposed to solve large scale projected continues-time Lyapunov equation.After matrix is block diagonalized,large scale Lyapunov equation is converted to a series of small order Lyapunov equations and then the solution is obtained.In the end of this paper,numerical examples are tested to evaluate the method.
作者 周立平
出处 《湖南工程学院学报(自然科学版)》 2011年第2期68-71,共4页 Journal of Hunan Institute of Engineering(Natural Science Edition)
基金 湖南省科技厅科技专项计划项目(2009FJ4060) 湖南省教育厅科研项目(09C442)
关键词 LYAPUNOV方程 模型降阶 投影方程 连续时序 Lyapunov equation model reduction projected equation continues-time
  • 相关文献

参考文献15

  • 1F.R. Gantmacher. Theory of Matrices[M]. Chelsea, New York, 1959.
  • 2P.C. Mtiler. Stability of Linear Mechanical Systems with Holonomic Constrains [J]. Appl. Mech. Rev. , 1993,46(11) : 160- 164.
  • 3P. Lancaster and L. Rodman. The Algebraic Riccati Equation [ M]. Oxford University Press, Oxford, 1995.
  • 4V. Mehrmann. The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution[Z]. Lecture Notes in Control and Information Sciences, Springer, Heidel-berg, 1991,163 : 1- 173.
  • 5R.H. Bartels and G. W. Stewart. Solution of the Matrix Equation AX+XB=C[J] . Comm. ACM., 1972 ,15(9), 820-826.
  • 6S.J. Hammarling. Numerical Solution of the Stable Non-negative Definite Lyapunov Equation[J].IMA J. Numer. Anal. , 1982, 2(3): 303-323.
  • 7G.H. Golub, S. Nash and C. Van Loan. A Hessen- berg-Schur Method for the Problem[J]. IEEE Trans. Automat. Control. , 1979,24(4) :909-913.
  • 8U. Baur and P. Benner. Factorized solution of Lyapunov Equations Based on Hierarchical Matrix Arithmetic[J]. Computing, 2006, 78(3): 211-234.
  • 9P. Benner and E.S. Quintana-Orti. Solving Stable Generalized Lyapunov Equations with the Matrix Sign Function[J].Numer. Algorithms, 1999, 20(1) :75-100.
  • 10P. Benner, E. S. Quintana-Orti and G. Quintana- Orti. Solving Stable Sylvester Equations via Rational iterative Schemes[J]. J. Sci. Comput. , 2006,28(1) 51-83.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部