期刊文献+

ZnO/TiO_2复合涂层电极的制备及其光电性能 被引量:3

Photoelectric Properties and Preparation of ZnO/TiO_2 Composite Coating Electrode
下载PDF
导出
摘要 以氧化铟锡导电玻璃为基材,采用电泳沉积法制备负载型ZnO/TiO2复合涂层,经450℃后续烧结处理后,采用XRD、SEM、EDX和UV-Vis DRS对ZnO/TiO2复合涂层进行表征;在pH=7.00的磷酸盐缓冲溶液中,分别测试ZnO/TiO2复合涂层电极在紫外灯和100 W白炽灯辐照下的电化学阻抗谱、Tafel极化曲线和循环伏安等电化学性质。结果表明:ZnO以200-300 nm晶粒分散于复合涂层中,质量百分比为0.74%;ZnO/TiO2复合涂层在可见光区有一定的吸收;在可见光辐照下ZnO/TiO2复合涂层电极具有较好的光电活性,并对水的分解具有较强的光电催化活性。 ZnO/TiO2 composite coating was prepared on indium-tin-oxide(ITO) conductive glass surface by electrophoretic deposition.After 450℃ subsequent sintering treatment,ZnO/TiO2 composite coating was characterized by XRD,SEM,EDX and UV-Vis DRS.And then,under ultraviolet light and visible light illumination,the photoelectric properties of ZnO/TiO2 composite coating electrode such as electrochemical impedance spectroscopy(EIS),Tafel polarization curve and cyclic voltammetry(CV) were measured on the pH=7.00 phosphate buffer system(PBS).The results show that ZnO grain size is 200~300 nm dispersed in ZnO/TiO2 composite coating and the mass percentage of ZnO is 0.74%,visible light is absorbed to some extent,electrochemical tests indicate that composite coating electrode takes on excellent photoelectrocatalytic activity for decomposition of H2O under visible light illumination.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2011年第6期1128-1132,共5页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金(No.30970887)资助项目
关键词 电泳沉积 ZnO/TiO2复合涂层电极 光电性能 ITO导电玻璃 electrophoretic deposition ZnO/TiO2 composite coating electrode photoelectric property indium-tin-oxide(ITO) conductive glass
  • 相关文献

参考文献24

  • 1Fujishima A, Honda K. Nature, 1972,237:37-40.
  • 2Linsebigler A L, Lu G Q, Yates J T. Chem. Rev., 1995,95: 735-758.
  • 3Obee T, Brown R T. Environ. Sci. Technol., 1995,29:1223- 1231.
  • 4Zhong L S, Hu J S, Cui Z M, et al. Chem. Mater., 2007,19 (18):4557-4562.
  • 5CHENEn-Wei(陈恩伟) YINDong-Hong(银董红) SONGHui-Juan(宋慧娟) etal.CuihuaXuebao,2006,27(4):344-348.
  • 6PENG-Feng(彭峰) REN-Yan-Qun(任艳群).Cuihua Xuebao,2003,24(4):243-247.
  • 7Kang M G, Han H, Kim K J. J. Photochem. Photobiol. A:Chem., 1999,125(1/2/3):119-125.
  • 8Hu C, Wang Y Z, Tang H X. Appl. Catal. B: Environ., 2001, 30(2):277-285.
  • 9Grzechulska J, Hamerski M, Morawski A W. Water Res., 2000,34(5):1638-1644.
  • 10SUNYing(孙颖) LIULang(刘浪) JIADian-Zeng(贾殿赠) etal.Wuji Huaxue Xuebao,2011,27(1):40-46.

同被引文献130

  • 1Xu X H, Tan C, Liu H J, et al. J. Electroanal. Chem., 2003,696:9-14.
  • 2Guo S J, Zhang S, Sun S H. Angew. Chem. Int. Ed., 2013,52:2-21.
  • 3Blizanac B B, Ross P N, Markovic N M. Electrochim. Acta,2007,52:2264-2271.
  • 4Lee C L, Chiou H P, et al. Chem. Commun., 2010,12(11):1609-1613.
  • 5Lu Y Z, Wang Y C, Chen W. J. Power Sources, 2011,196(6):3033-3038.
  • 6Guo J, Hsu A, Chu D, Chen R. J. Phys. Chem. C, 2010,114(4):4324-4330.
  • 7Demarconnay L, Coutanceau C, Léger J M. Electrochim.Acta, 2004,49:4513-4521.
  • 8Han J J, Li N, Zhang T Y. J. Power Sources, 2009,193(2):885-889.
  • 9Compton O C, Nguyen S B T. Small, 2010,6:711-723.
  • 10Chavez V A, Shaffer M S P, Boccaccini A R. J. Phys.Chem. B, 2013,117:1502-1515.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部