期刊文献+

利用基追踪算法实现图像压缩感知重建研究 被引量:6

Research of image reconstruction of Compressed Sensing using basis pursuit algorithm
下载PDF
导出
摘要 压缩感知理论突破了奈奎斯特采样频率的限制,利用该理论研究和实现了二维图像的压缩采样和重建。该方案利用小波变换实现图像稀疏化,利用标准伪随机数均匀分布和二维中心傅里叶变换生成随机测量矩阵,并对小波变换后的高频子带进行加权采样,用改进的基追踪算法实现二维图像压缩感知重建。仿真实验结果表明,该方案重建图像的客观评价PSNR效果较好。 Theory of compressed sensing releases us from the restriction defined by Nyquist sampling frequency.This paper focuses on research and realization of a new compressing and sampling scheme for two dimensional image data based on this theory.Sparseness processing is realized eby using wavelet transform in this scheme,and the random measurement matrix is generated using standard pseudo-random number matrix of uniformly distributed sequences and two dimension central Fourier transform,also weighted sampling is implemented for wavelet transformed high frequency sub-bands.Compressed Sensing reconstruction of two dimensional image is solved using improved basis pursuit algorithm.Simulation experiment shows that better PSNR of objective evaluation of the reconstructed image is achieved.
出处 《电子设计工程》 2011年第11期163-166,共4页 Electronic Design Engineering
基金 国家自然科学基金项目(61072111 60672156) 吉林省科技厅项目(20100503)
关键词 压缩感知 基追踪算法 重建 小波变换 Compressed Sensing basis pursuit algorithm reconstruction wavelet transform
  • 相关文献

参考文献12

  • 1Donoho D.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 2Candè E,Romberg J,Tao T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 3Romberg J.Imaging via compressive sampling[J].IEEE Signal Processing Magazine,2008,25 (2):14-20.
  • 4Gemmeke J F,Cranen B.Using sparse representations for missing data imputation in noise robust speech recognition[C]//European Signal Processing Conf.(EUSIPCO),Lausanne,2008:987-991.
  • 5Duarte M F,Davenport M A,Takhar D,et al.Single-Pixel imaging via compressive sampling[J].IEEE Signal Processing Magazine,2008,25 (2):83-91.
  • 6Baraniuk R,Steeghs P.Compressive radar imaging[C]//Proceedings of the Radar Conference.Washington D.C.,2007,128-133.
  • 7Bhattacharya S,Blumensath T,Mulagrew B,et al.Fast encoding of synthetic aperture radar raw data using compressed sensing[C]//In:Proceedings of Statistical Signal Processing.Washington D.C.,2007,448-452.
  • 8Lustig M,Donoho D L,Pauly J MSparse MRI:The application of compressed sensing for rapid MR imaging[J].Magnetic Resonance in Medicine,2007,58(6):1182-1195.
  • 9Chen S S,Donoho D L,Saunders M A.Atomic decomposition by basis pursuit[J].SIAM Review,2001,43(1):129-159.
  • 10Candès E.Compmssive sampling[C]//Proceedings of the Internation Congress of Mathematicians,Madrid,Spain,2006,:1433-1452.

同被引文献25

  • 1Donoho D L. Compressed sensing [ J]. IEEE Transactions on Information Theory ,2006,52 ( 4 ) : 1 289-1 306.
  • 2Tropp J, Gilbert A. Signal recovery from random measurements via orthogonal matching pursuit [ J ]. IEEE Trans on Information Theory ,2007,53 ( 12 ) :4 655-4 666.
  • 3Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction [J ]. IEEE Trans on Information Theory, 2009,55 ( 5 ) : 2 230 -2 249.
  • 4Needell D,Tropp J A. CoSaMP:iterative signal recovery from incomplete and inaccurate samples [ J ]. Applied and Computational Harmonic Analysis,2009,26(3):301-321.
  • 5Blumensath T, Davies E. herative thresholding fur sparse approximations [ J ]. Journal of Fourier Analysis and Applications ,2008,14 ( 5 ) :629-654.
  • 6Blumensath T, Davies E. lterative thresholding for compressed sensing[ J]. Applied and Computational Harmonic Analysis, 2009,27 ( 3 ) :265-274.
  • 7Bhattacharya S, BlumensathT, MulgrewB, et al. Fast encoding of synthetic aperture radar raw data using compressed sensing [ C ] // IEEE Workshop on Statistical Signal Processing. Madison. USA: IEEE Press, 2007:448-452.
  • 8Chartrand R, Staneva V. Restricted isometry properties and nonconvex compressive sensing [ J ]. Inverse Problems, 2008, 24(3) :1-14.
  • 9周敏华,陈钱.医用红外热成像技术的进展[J].红外,2008,29(2):38-42. 被引量:21
  • 10石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:712

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部