期刊文献+

一种有效的无序多图像分组及其拓扑有序化的算法

A Novel and Effective Grouping and Organization Algorithm for Unordered 3D Image Reconstruction
下载PDF
导出
摘要 针对大规模三维重建应用中多幅无序图像的分组及其有序化问题,提出一种鲁棒的无序图像分组方法。首先,对大量无序图像提取SIFT(scale invariant feature transform)特征,接着采用DBH(dichotomy based hash)算法对图像特征集合进行快速匹配,最后应用一种新的基于图像内容的图像相似度度量准则,将无序图像分组并采用视图生成树拓扑化组内图像。实验结果表明,该算法能快速有效地对无序图像分类并拓扑化。 Aim. The introduction of the full paper reviews some papers in the open literature and then proposes what we believe to be a novel and relatively more effective grouping and organization algorithm, which is explained in section 1. Section 1 describes the feature similarities of any two images to judge their correlation; subsection 1. 1 gives a four-step procedure for the dichotomy-based Hash (DBH) feature matching algorithm; subsection 1.2 presents the grouping strategy for SIFT (scale invariant feature transform) matching; its core is that, on the basis of the complicated and correlated image similarity measure proposed by Yao et al in Ref. 4, we propose a novel image content-based similarity measure, which is given in eq. (2), to categorize the unordered images into their corresponding groups and further produce their view-spanning trees. To verify the effectiveness of our grouping strategy, section 2 did experiments on two sets of challenging image data; the experimental results, given in Figs. 2, 3 and 4 and Table 1, and their analysis show preliminarily that our algorithm can effectively group and organize a large number of unordered images, while not requiring the modification by any other methods.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2011年第3期412-417,共6页 Journal of Northwestern Polytechnical University
基金 航空基金(2010ZD53 2009ZD53044) 西北工业大学种子基金(Z2011138)资助
关键词 多视图匹配 简单二分哈希 图像分组 相似性度量 image processing, algorithms, image reconstruction, feature extraction, topology , strategic planning, feature matching, dichotomy-based Hash ( DBH ) algorithm, unordered image grouping, similarity measure
  • 相关文献

参考文献8

  • 1Schaffalitzky F, Zisserman A. Multi-View Matching for Unordered Image Sets, or "How Do I Organize My Hohday Snaps. ECCV 2002, 2002, Copenhagen, Denmark.
  • 2Yao J, Cham W K. Robust Multi-View Feature Matching from Multiple Unordered Views. Pattern Recognition, 2007,40:3081 -3099.
  • 3Zeng X, Wang Q, Xu J. MAP Model for Large-Scale 3D Reconstruction and Coarse Matching for Unordered Wide-Baseline Pho- tos. BMVC, 2008, Leeds, UK.
  • 4David G L. Distinctive Image Features from Scale-Invariant Key Points. International Journal of Computer Vision, 2004, 60 (2) : 91 - 110.
  • 5Mikolajczyk K, Matas J. Improving Descriptors for Fast Tree Matching by Optimal Linear Projection. ICCV 2007, 2007, Rio de Janeiro, Brazil.
  • 6Omercevic D, Drbohlav O, Leonardis A. High-Dimensional Feature Matching: Employing the Concept of Meaningful Nearest Neighbors. ICCV2007, 2007, Rio de Janeiro, Brazil.
  • 7He Zhoucan, Wang Qing. A Fast and Effective Dichotomy Based Hash Algorithm for Image Matching. Lecture Notes in Comput- er Science, 2008, 5358 : 328 - 337.
  • 8Chum O, Matas J. Matching with PROSAC - Progressive Sample Consensus. CVPR 2005, 2005, San Diego, CA, USA.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部